- 相關(guān)推薦
數(shù)學(xué)課程初一教案
作為一位優(yōu)秀的人民教師,就難以避免地要準(zhǔn)備教案,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。那么問題來了,教案應(yīng)該怎么寫?下面是小編精心整理的數(shù)學(xué)課程初一教案,僅供參考,歡迎大家閱讀。
數(shù)學(xué)課程初一教案1
教學(xué)目標(biāo):
知識(shí)與技能
1.掌握直角三角形的判別條件,并能進(jìn)行簡(jiǎn)單應(yīng)用;
2.進(jìn)一步發(fā)展數(shù)感,增加對(duì)勾股數(shù)的直觀體驗(yàn),培養(yǎng)從實(shí)際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型.
3.會(huì)通過邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論.
情感態(tài)度與價(jià)值觀
敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí).
教學(xué)重點(diǎn)
運(yùn)用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會(huì)通過邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論.
教學(xué)難點(diǎn)
會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論.
課前準(zhǔn)備
標(biāo)有單位長(zhǎng)度的細(xì)繩、三角板、量角器、題篇
教學(xué)過程:
復(fù)習(xí)引入:
請(qǐng)學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對(duì)嗎?
創(chuàng)設(shè)問題情景:由課前準(zhǔn)備好的`一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法.
這樣做得到的是一個(gè)直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
、比绾蝸砼袛?(用直角三角板檢驗(yàn))
這個(gè)三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?
就是說,如果三角形的三邊為,請(qǐng)猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿足較小兩邊的平方和等于較大邊的平方時(shí))
、怖^續(xù)嘗試:下面的三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)a,b,c:
5,12,13;6,8,10;8,15,17.
(1)這三組數(shù)都滿足a2+b2=c2嗎?
(2)分別以每組數(shù)為三邊長(zhǎng)作出三角形,用量角器量一量,它們都是直角三角形嗎?
、持苯侨切闻卸ǘɡ恚喝绻切蔚娜呴L(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形.
滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).
⒋例1一個(gè)零件的形狀如左圖所示,按規(guī)定這個(gè)零件中∠A和∠DBC都應(yīng)為直角.工人師傅量得這個(gè)零件各邊尺寸如右圖所示,這個(gè)零件符合要求嗎?
隨堂練習(xí):
、毕铝袔捉M數(shù)能否作為直角三角形的三邊長(zhǎng)?說說你的理由.
、9,12,15;⑵15,36,39;
、12,35,36;⑷12,18,22.
、惨阎?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角.
、乘倪呅蜛BCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個(gè)四邊形的面積.
、戳(xí)題1.3
課堂小結(jié):
、敝苯侨切闻卸ǘɡ恚喝绻切蔚娜呴L(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形.
、矟M足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù).
數(shù)學(xué)課程初一教案2
教學(xué)目標(biāo)
教學(xué)知識(shí)點(diǎn):能運(yùn)用勾股定理及直角三角形的判別條件(即勾股定理的逆定理)解決簡(jiǎn)單的實(shí)際問題.
能力訓(xùn)練要求:1.學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念.
2.在將實(shí)際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.
情感與價(jià)值觀要求:1.通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣.
2.在解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性,體現(xiàn)人人都學(xué)有用的數(shù)學(xué).
教學(xué)重點(diǎn)難點(diǎn):
重點(diǎn):探索、發(fā)現(xiàn)給定事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問題.
難點(diǎn):利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題.
教學(xué)過程
1、創(chuàng)設(shè)問題情境,引入新課:
前幾節(jié)課我們學(xué)習(xí)了勾股定理,你還記得它有什么作用嗎?
例如:欲登12米高的建筑物,為安全需要,需使梯子底端離建筑物5米,至少需多長(zhǎng)的梯子?
根據(jù)題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長(zhǎng)度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.
所以至少需13米長(zhǎng)的梯子.
2、講授新課:①、螞蟻怎么走最近
出示問題:有一個(gè)圓柱,它的高等于12厘米,底面半徑等于3厘米.在圓行柱的底面A點(diǎn)有一只螞蟻,它想吃到上底面上與A點(diǎn)相對(duì)的B點(diǎn)處的食物,需要爬行的的.最短路程是多少?(π的值取3).
(1)同學(xué)們可自己做一個(gè)圓柱,嘗試從A點(diǎn)到B點(diǎn)沿圓柱的側(cè)面畫出幾條路線,你覺得哪條路線最短呢?(小組討論)
(2)如圖,將圓柱側(cè)面剪開展開成一個(gè)長(zhǎng)方形,從A點(diǎn)到B點(diǎn)的最短路線是什么?你畫對(duì)了嗎?
(3)螞蟻從A點(diǎn)出發(fā),想吃到B點(diǎn)上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?(學(xué)生分組討論,公布結(jié)果)
我們知道,圓柱的側(cè)面展開圖是一長(zhǎng)方形.好了,現(xiàn)在咱們就用剪刀沿母線AA′將圓柱的側(cè)面展開(如下圖).
我們不難發(fā)現(xiàn),剛才幾位同學(xué)的走法:
(1)A→A′→B;(2)A→B′→B;
(3)A→D→B;(4)A—→B.
哪條路線是最短呢?你畫對(duì)了嗎?
第(4)條路線最短.因?yàn)椤皟牲c(diǎn)之間的連線中線段最短”.
、、做一做:教材14頁。李叔叔隨身只帶卷尺檢測(cè)AD,BC是否與底邊AB垂直,也就是要檢測(cè)∠DAB=90°,∠CBA=90°.連結(jié)BD或AC,也就是要檢測(cè)△DAB和△CBA是否為直角三角形.很顯然,這是一個(gè)需用勾股定理的逆定理來解決的實(shí)際問題.
、邸㈦S堂練習(xí)
出示投影片
1.甲、乙兩位探險(xiǎn)者,到沙漠進(jìn)行探險(xiǎn).某日早晨8∶00甲先出發(fā),他以6千米/時(shí)的速度向東行走.1時(shí)后乙出發(fā),他以5千米/時(shí)的速度向北行進(jìn).上午10∶00,甲、乙兩人相距多遠(yuǎn)?
2.如圖,有一個(gè)高1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分是0.5米,問這根鐵棒應(yīng)有多長(zhǎng)?
1.分析:首先我們需要根據(jù)題意將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型.
解:(如圖)根據(jù)題意,可知A是甲、乙的出發(fā)點(diǎn),10∶00時(shí)甲到達(dá)B點(diǎn),則AB=2×6=12(千米);乙到達(dá)C點(diǎn),則AC=1×5=5(千米).
在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙兩人相距13千米.
2.分析:從題意可知,沒有告訴鐵棒是如何插入油桶中,因而鐵棒的長(zhǎng)是一個(gè)取值范圍而不是固定的長(zhǎng)度,所以鐵棒最長(zhǎng)時(shí),是插入至底部的A點(diǎn)處,鐵棒最短時(shí)是垂直于底面時(shí).
解:設(shè)伸入油桶中的長(zhǎng)度為x米,則應(yīng)求最長(zhǎng)時(shí)和最短時(shí)的值.
(1)x2=1.52+22,x2=6.25,x=2.5
所以最長(zhǎng)是2.5+0.5=3(米).
(2)x=1.5,最短是1.5+0.5=2(米).
答:這根鐵棒的長(zhǎng)應(yīng)在2~3米之間(包含2米、3米).
3.試一試(課本P15)
在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個(gè)問題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面.請(qǐng)問這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各為多少?
我們可以將這個(gè)實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型.
解:如圖,設(shè)水深為x尺,則蘆葦長(zhǎng)為(x+1)尺,由勾股定理可求得
(x+1)2=x2+52,x2+2x+1=x2+25
解得x=12
則水池的深度為12尺,蘆葦長(zhǎng)13尺.
④、課時(shí)小結(jié)
這節(jié)課我們利用勾股定理和它的逆定理解決了生活中的幾個(gè)實(shí)際問題.我們從中可以發(fā)現(xiàn)用數(shù)學(xué)知識(shí)解決這些實(shí)際問題,更為重要的是將它們轉(zhuǎn)化成數(shù)學(xué)模型.
、、課后作業(yè)
課本P25、習(xí)題1.52
數(shù)學(xué)課程初一教案3
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
使學(xué)生知道當(dāng)直角三角形的銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也都固定這一事實(shí).
(二)能力訓(xùn)練點(diǎn)
逐步培養(yǎng)學(xué)生會(huì)觀察、比較、分析、概括等邏輯思維能力.
(三)德育滲透點(diǎn)
引導(dǎo)學(xué)生探索、發(fā)現(xiàn),以培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神和良好的學(xué)習(xí)習(xí)慣.
二、教學(xué)重點(diǎn)、難點(diǎn)
1.重點(diǎn):使學(xué)生知道當(dāng)銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也是固定的這一事實(shí).
2.難點(diǎn):學(xué)生很難想到對(duì)任意銳角,它的對(duì)邊、鄰邊與斜邊的比值也是固定的事實(shí),關(guān)鍵在于教師引導(dǎo)學(xué)生比較、分析,得出結(jié)論.
三、教學(xué)步驟
(一)明確目標(biāo)
1.如圖6-1,長(zhǎng)5米的梯子架在高為3米的墻上,則A、B間距離為多少米?
2.長(zhǎng)5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?
3.若長(zhǎng)5米的'梯子以傾斜角40°架在墻上,則A、B間距離為多少?
4.若長(zhǎng)5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?
前兩個(gè)問題學(xué)生很容易回答.這兩個(gè)問題的設(shè)計(jì)主要是引起學(xué)生的回憶,并使學(xué)生意識(shí)到,本章要用到這些知識(shí).但后兩個(gè)問題的設(shè)計(jì)卻使學(xué)生感到疑惑,這對(duì)初三年級(jí)這些好奇、好勝的學(xué)生來說,起到激起學(xué)生的學(xué)習(xí)興趣的作用.同時(shí)使學(xué)生對(duì)本章所要學(xué)習(xí)的內(nèi)容的特點(diǎn)有一個(gè)初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識(shí)是不能解決的,解決這類問題,關(guān)鍵在于找到一種新方法,求出一條邊或一個(gè)未知銳角,只要做到這一點(diǎn),有關(guān)直角三角形的其他未知邊角就可用學(xué)過的知識(shí)全部求出來.
通過四個(gè)例子引出課題.
(二)整體感知
1.請(qǐng)每一位同學(xué)拿出自己的三角板,分別測(cè)量并計(jì)算30°、45°、60°角的對(duì)邊、鄰邊與斜邊的比值.
學(xué)生很快便會(huì)回答結(jié)果:無論三角尺大小如何,其比值是一個(gè)固定的值.程度較好的學(xué)生還會(huì)想到,以后在這些特殊直角三角形中,只要知道其中一邊長(zhǎng),就可求出其他未知邊的長(zhǎng).
2.請(qǐng)同學(xué)畫一個(gè)含40°角的直角三角形,并測(cè)量、計(jì)算40°角的對(duì)邊、鄰邊與斜邊的比值,學(xué)生又高興地發(fā)現(xiàn),不論三角形大小如何,所求的比值是固定的大部分學(xué)生可能會(huì)想到,當(dāng)銳角取其他固定值時(shí),其對(duì)邊、鄰邊與斜邊的比值也是固定的嗎?
這樣做,在培養(yǎng)學(xué)生動(dòng)手能力的同時(shí),也使學(xué)生對(duì)本節(jié)課要研究的知識(shí)有了整體感知,喚起學(xué)生的求知欲,大膽地探索新知.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過程
1.通過動(dòng)手實(shí)驗(yàn),學(xué)生會(huì)猜想到“無論直角三角形的銳角為何值,它的對(duì)邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個(gè)命題呢?學(xué)生這時(shí)的思維很活躍.對(duì)于這個(gè)問題,部分學(xué)生可能能解決它.因此教師此時(shí)應(yīng)讓學(xué)生展開討論,獨(dú)立完成.
2.學(xué)生經(jīng)過研究,也許能解決這個(gè)問題.若不能解決,教師可適當(dāng)引導(dǎo):
若一組直角三角形有一個(gè)銳角相等,可以把其
頂點(diǎn)A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學(xué)們能解決這個(gè)問題嗎?引導(dǎo)學(xué)生獨(dú)立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的對(duì)邊、鄰邊與斜邊的比值,是一個(gè)固定值.
通過引導(dǎo),使學(xué)生自己獨(dú)立掌握了重點(diǎn),達(dá)到知識(shí)教學(xué)目標(biāo),同時(shí)培養(yǎng)學(xué)生能力,進(jìn)行了德育滲透.
而前面導(dǎo)課中動(dòng)手實(shí)驗(yàn)的設(shè)計(jì),實(shí)際上為突破難點(diǎn)而設(shè)計(jì).這一設(shè)計(jì)同時(shí)起到培養(yǎng)學(xué)生思維能力的作用.
練習(xí)題為 作了孕伏同時(shí)使學(xué)生知道任意銳角的對(duì)邊與斜邊的比值都能求出來.
(四)總結(jié)與擴(kuò)展
1.引導(dǎo)學(xué)生作知識(shí)總結(jié):本節(jié)課在復(fù)習(xí)勾股定理及含30°角直角三角形的性質(zhì)基礎(chǔ)上,通過動(dòng)手實(shí)驗(yàn)、證明,我們發(fā)現(xiàn),只要直角三角形的銳角固定,它的對(duì)邊、鄰邊與斜邊的比值也是固定的
教師可適當(dāng)補(bǔ)充:本節(jié)課經(jīng)過同學(xué)們自己動(dòng)手實(shí)驗(yàn),大膽猜測(cè)和積極思考,我們發(fā)現(xiàn)了一個(gè)新的結(jié)論,相信大家的邏輯思維能力又有所提高,希望大家發(fā)揚(yáng)這種創(chuàng)新精神,變被動(dòng)學(xué)知識(shí)為主動(dòng)發(fā)現(xiàn)問題,培養(yǎng)自己的創(chuàng)新意識(shí).
2.擴(kuò)展:當(dāng)銳角為30°時(shí),它的對(duì)邊與斜邊比值我們知道.今天我們又發(fā)現(xiàn),銳角任意時(shí),它的對(duì)邊與斜邊的比值也是固定的如果知道這個(gè)比值,已知一邊求其他未知邊的問題就迎刃而解了.看來這個(gè)比值很重要,下節(jié)課我們就著重研究這個(gè)“比值”,有興趣的同學(xué)可以提前預(yù)習(xí)一下.通過這種擴(kuò)展,不僅對(duì)正、余弦概念有了初步印象,同時(shí)又激發(fā)了學(xué)生的興趣.
四、布置作業(yè)
本節(jié)課內(nèi)容較少,而且是為正、余弦概念打基礎(chǔ)的,因此課后應(yīng)要求學(xué)生預(yù)習(xí)正余弦概念.
五、板書設(shè)計(jì)
數(shù)學(xué)課程初一教案4
教學(xué)目標(biāo):
1.經(jīng)歷運(yùn)用拼圖的方法說明勾股定理是正確的過程,在數(shù)學(xué)活動(dòng)中發(fā)展學(xué)生的探究意識(shí)和合作交流的習(xí)慣。
2.掌握勾股定理和他的簡(jiǎn)單應(yīng)用
重點(diǎn)難點(diǎn):
重點(diǎn):能熟練運(yùn)用拼圖的方法證明勾股定理
難點(diǎn):用面積證勾股定理
教學(xué)過程
七、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題
我們已經(jīng)通過數(shù)格子的方法發(fā)現(xiàn)了直角三角形三邊的關(guān)系,究竟是幾個(gè)實(shí)例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內(nèi)容,下邊請(qǐng)大家畫四個(gè)全等的直角三角形,并把它剪下來,用這四個(gè)直角三角形,拼一拼、擺一擺,看看能否得到一個(gè)含有以斜邊c為邊長(zhǎng)的正方形,并與同學(xué)交流。在同學(xué)操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?
(同學(xué)們回答有這幾種可能:(1)(2))
在同學(xué)交流形成共識(shí)之后,教師把這兩種表示大正方形面積的式子用等號(hào)連接起來。
=請(qǐng)同學(xué)們對(duì)上面的式子進(jìn)行化簡(jiǎn),得到:即=
這就可以從理論上說明勾股定理存在。請(qǐng)同學(xué)們?nèi)ビ脛e的'拼圖方法說明勾股定理。
八、講例
1.飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛機(jī)飛到一個(gè)男孩頭頂正上方4000多米處,過20秒,飛機(jī)距離這個(gè)男孩頭頂5000米,飛機(jī)每時(shí)飛行多少千米?
分析:根據(jù)題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機(jī)每小時(shí)飛行多少千米,就要知道飛機(jī)在20秒的時(shí)間里的飛行路程,即圖中的CB的長(zhǎng),由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。
解:由勾股定理得
即BC=3千米飛機(jī)20秒飛行3千米,那么它1小時(shí)飛行的距離為:
答:飛機(jī)每個(gè)小時(shí)飛行540千米。
九、議一議
展示投影2(書中的圖1—9)
觀察上圖,應(yīng)用數(shù)格子的方法判斷圖中的三角形的三邊長(zhǎng)是否滿足
同學(xué)在議論交流形成共識(shí)之后,老師總結(jié)。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。
十、作業(yè)
1、1、課文P11§1.21、2
2、選用作業(yè)。
數(shù)學(xué)課程初一教案5
教學(xué)目標(biāo):
1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推力意識(shí),主動(dòng)探究的習(xí)慣,進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。
2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說理和簡(jiǎn)單的推理的意識(shí)及能力。
重點(diǎn)難點(diǎn):
重點(diǎn):了解勾股定理的由來,并能用它來解決一些簡(jiǎn)單的問題。
難點(diǎn):勾股定理的發(fā)現(xiàn)
教學(xué)過程
一、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題
出示投影1(章前的圖文p1)教師道白:介紹我國(guó)古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國(guó)是最早了解勾股定理的國(guó)家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。
出示投影2(書中的P2圖1—2)并回答:
1、觀察圖1-2,正方形A中有_______個(gè)小方格,即A的.面積為______個(gè)單位。
正方形B中有_______個(gè)小方格,即A的面積為______個(gè)單位。
正方形C中有_______個(gè)小方格,即A的面積為______個(gè)單位。
2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問:
3、圖1—2中,A,B,C之間的面積之間有什么關(guān)系?
學(xué)生交流后形成共識(shí),教師板書,A+B=C,接著提出圖1—1中的A.B,C的關(guān)系呢?
二、做一做
出示投影3(書中P3圖1—4)提問:
1、圖1—3中,A,B,C之間有什么關(guān)系?
2、圖1—4中,A,B,C之間有什么關(guān)系?
3、從圖1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?
學(xué)生討論、交流形成共識(shí)后,教師總結(jié):
以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。
三、議一議
1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長(zhǎng)表示正方形的面積嗎?
2、你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間的關(guān)系嗎?
在同學(xué)的交流基礎(chǔ)上,老師板書:
直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”
也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c
那么
我國(guó)古代稱直角三角形的較短的直角邊為勾,較長(zhǎng)的為股,斜邊為弦,這就是勾股定理的由來。
3、分別以5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測(cè)量斜邊的長(zhǎng)度(學(xué)生測(cè)量后回答斜邊長(zhǎng)為13)請(qǐng)大家想一想(2)中的規(guī)律,對(duì)這個(gè)三角形仍然成立嗎?(回答是肯定的:成立)
四、想一想
這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長(zhǎng)嗎?只的是屏幕的款嗎?那他指什么呢?
五、鞏固練習(xí)
1、錯(cuò)例辨析:
△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應(yīng)滿足=25
即:c=5
辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題
△ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。
(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊
綜上所述這個(gè)題目條件不足,第三邊無法求得。
2、練習(xí)P7§1.11
六、作業(yè)
課本P7§1.12、3、4
數(shù)學(xué)課程初一教案6
(一)創(chuàng)設(shè)情境 導(dǎo)入新課
不利用工具,請(qǐng)你將一張用紙片做的角分成兩個(gè)相等的角。你有什么辦法?
如果前面活動(dòng)中的紙片換成木板、鋼板等沒法折的角,又該怎么辦呢?
設(shè)計(jì)目的:能聚攏學(xué)生的思維為新課的開展創(chuàng)造了良好的教學(xué)氛圍。
(二)合作交流 探究新知
(活動(dòng)一)探究角平分儀的原理。具體過程如下:
播放奧巴馬訪問我國(guó)的錄像資料------引出雨傘-----觀察它的截面圖,使學(xué)生認(rèn)清其 中的邊角關(guān)系-----引出角平分線;并且運(yùn)用幾何畫板對(duì)傘的開合進(jìn)行動(dòng)態(tài)演示,讓學(xué)生直觀感受傘面形成的角與主桿的關(guān)系-----讓學(xué)生設(shè)計(jì)制作角平分儀;并利用以前所學(xué)的知識(shí)尋找理論上的依據(jù),說明這個(gè)儀器的制作原理。
設(shè)計(jì)目的:用生活中的實(shí)例感知。以最近大事作引入點(diǎn),以最常見的事物為載體,讓學(xué)生感受到生活中處處都有數(shù)學(xué),認(rèn)識(shí)到數(shù)學(xué)的價(jià)值。其中設(shè)計(jì)制作角平分儀,可培養(yǎng)學(xué)生的創(chuàng)造力和成就感以及學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生很輕松的完成活動(dòng)二。
(活動(dòng)二)通過上述探究,能否總結(jié)出尺規(guī)作已知角的平分線的一般方法.自己動(dòng)手做做看.然后與同伴交流操作心得.
分小組完成這項(xiàng)活動(dòng),教師可參與到學(xué)生活動(dòng)中,及時(shí)發(fā)現(xiàn)問題,給予啟發(fā)和指導(dǎo),使講評(píng)更具有針對(duì)性。
討論結(jié)果展示: 教師根據(jù)學(xué)生的敘述,利用多媒體課件演示作已知角的平分線的方法:
已知:∠AO B.
求作:∠AOB的平分線.
作法:
(1)以O(shè)為圓心,適當(dāng)長(zhǎng)為半徑作弧,分別交OA、OB于M、N.
(2)分別以M、N為圓心,大于1/2MN的長(zhǎng)為半徑作弧.兩弧在∠AOB內(nèi)部交于點(diǎn)C.
(3)作射線OC,射線OC即為所求.
設(shè)計(jì)目的:使學(xué)生能更直觀地理解畫法,提高學(xué)習(xí)數(shù)學(xué)的興趣。
議一議:
1.在上面作法的第二步中,去掉“大于 MN的長(zhǎng)”這個(gè)條件行嗎?
2.第二步中所作的兩弧交點(diǎn)一定在∠AOB的內(nèi)部嗎?
設(shè)計(jì)這兩個(gè)問題的目的在于加深對(duì)角的平分線的作法的理解,培養(yǎng)數(shù)學(xué)嚴(yán)密性的'良好學(xué)習(xí)習(xí)慣。
學(xué)生討論結(jié)果總結(jié):
1.去掉“大于 MN的長(zhǎng)”這個(gè)條件,所作的兩弧可能沒有交點(diǎn),所以就找不到角的平分線.
2.若分別以M、N為圓心,大于 MN的長(zhǎng)為半徑畫兩弧,兩弧的交點(diǎn)可能在∠AOB的內(nèi)部,也可能在∠AOB的外部,而我們要找的是∠AOB內(nèi)部的交點(diǎn),否則兩弧交點(diǎn)與頂點(diǎn)連線得到的射線就不是∠AOB的平分線了.
3.角的平分線是一條射線.它不是線段,也不是直線,所以第二步中的兩個(gè)限制缺一不可.
4.這種作法的可行性可以通過全等三角形來證明.
(活動(dòng)三)探究角平分線的性質(zhì)
思考:已知一角及其角平分線添加輔助線構(gòu)成全等三角形;構(gòu)成全等的直角三角形。這樣的三角形有多少對(duì)?
這樣設(shè)計(jì)的目的是加深對(duì)全等的認(rèn)識(shí)。
【數(shù)學(xué)課程初一教案】相關(guān)文章:
數(shù)學(xué)課程教學(xué)反思15篇03-04
初一秋天的懷念教案02-20
初一濟(jì)南的冬天教案11-24
初一數(shù)學(xué)復(fù)習(xí)教案10-21
初一英語教案02-22
初一英語上冊(cè)教案01-23
初一精品歷史教案10-04
初一上冊(cè)地理教案10-10