高一數(shù)學(xué)教學(xué)計(jì)劃【精】
時(shí)光在流逝,從不停歇,我們的工作又進(jìn)入新的階段,為了在工作中有更好的成長(zhǎng),做好計(jì)劃,讓自己成為更有競(jìng)爭(zhēng)力的人吧。好的計(jì)劃是什么樣的呢?以下是小編幫大家整理的高一數(shù)學(xué)教學(xué)計(jì)劃,希望對(duì)大家有所幫助。
高一數(shù)學(xué)教學(xué)計(jì)劃1
一、基本情況
高一計(jì)算機(jī)1323班共有學(xué)生55人,其中男生42人,女生13人。高一新生剛進(jìn)入高中,學(xué)習(xí)環(huán)境新,好奇心強(qiáng).但是普遍學(xué)習(xí)習(xí)慣不好,數(shù)學(xué)基礎(chǔ)較差,學(xué)習(xí)興趣不濃.所以工作的重心在于提高學(xué)生對(duì)數(shù)學(xué)科的興趣,以及在補(bǔ)足初中知識(shí)漏洞的前提下,進(jìn)一步的夯實(shí)學(xué)生基礎(chǔ).
二、指導(dǎo)思想
全面提高學(xué)生的科學(xué)文化素養(yǎng),圍著課堂教學(xué)這個(gè)中心,更新教育觀念,進(jìn)一步提高教學(xué)水平,培養(yǎng)學(xué)生分析問題解決問題的能力,同時(shí)扎扎實(shí)實(shí)抓好基礎(chǔ)知識(shí),注意學(xué)生習(xí)慣的培養(yǎng),為三年后高考打下堅(jiān)實(shí)的基礎(chǔ)。
三、工作任務(wù)和措施
任務(wù):基礎(chǔ)模塊第一章至第四章
第一章集合(9月份
第二章不等式(10月份
第三章函數(shù)(11月份
第四章指數(shù)函數(shù)與對(duì)數(shù)函數(shù)(12月份-1月份
措施:
1.夯實(shí)三基
知識(shí)、技能和能力三者關(guān)系是互相依存、互相促進(jìn)的整體,能力是在知識(shí)的教學(xué)和技能的培訓(xùn)中形成的,通過數(shù)學(xué)思想的形成和數(shù)學(xué)方法的掌握,能力才得到培養(yǎng)和發(fā)展,同時(shí),能力的提高又會(huì)對(duì)知識(shí)的理解和掌握起促進(jìn)作用。因此,在教學(xué)中應(yīng)注意:
A.教學(xué)面向全體學(xué)生。
B.重視概念的歸納、規(guī)律的總結(jié)、技能的訓(xùn)練。
C.重視知識(shí)的'產(chǎn)生、發(fā)展過程。
D.加強(qiáng)知識(shí)過關(guān)檢測(cè),做好查漏補(bǔ)缺工作。
2.優(yōu)化課堂教學(xué)結(jié)構(gòu)
A.精心設(shè)計(jì)課堂教學(xué):
B.課堂練習(xí)典型化;
C.教學(xué)語(yǔ)言精練化
D.板書規(guī)范化。
3.加強(qiáng)學(xué)習(xí)方法指導(dǎo):
A.指導(dǎo)學(xué)生看書,培養(yǎng)學(xué)生主動(dòng)學(xué)習(xí)的習(xí)慣。
B.指導(dǎo)學(xué)生整理知識(shí),總結(jié)解題規(guī)律,歸納典型例題解法及一題多解與多題一解。
4.加強(qiáng)學(xué)風(fēng)建設(shè)與學(xué)習(xí)習(xí)慣的培養(yǎng)。
適當(dāng)安排作業(yè),認(rèn)真檢查督促,加強(qiáng)優(yōu)生和后進(jìn)生的輔導(dǎo),對(duì)學(xué)生的作業(yè)盡量做到面批。
四、各章節(jié)授課具體時(shí)間安排:
(基礎(chǔ)模塊第一章集合(約12課時(shí)
(1理解集合、元素及其關(guān)系,掌握集合的表示法。
(2掌握集合之間的關(guān)系(子集、真子集、相等。
(3理解集合的運(yùn)算(交、并、補(bǔ)。
(4了解充要條件。
(基礎(chǔ)模塊第二章不等式(約12課時(shí)
(1理解不等式的基本性質(zhì)。
(2掌握區(qū)間的概念。高一上數(shù)學(xué)教學(xué)計(jì)劃高一上數(shù)學(xué)教學(xué)計(jì)劃。
(3掌握一元二次不等式的解法。
基礎(chǔ)模塊)第三章函數(shù)(約20課時(shí)
(1理解函數(shù)的概念和函數(shù)的三種表示法。
(2理解函數(shù)的單調(diào)性與奇偶性。
(3能運(yùn)用函數(shù)的知識(shí)解決有關(guān)實(shí)際問題。
(基礎(chǔ)模塊第四章指數(shù)函數(shù)與對(duì)數(shù)函數(shù)(約20課時(shí)
(1理解有理指數(shù)冪,掌握實(shí)數(shù)指數(shù)冪及其運(yùn)算法則,掌握利用計(jì)算器進(jìn)行冪的計(jì)算方法。
(2了解冪函數(shù)的概念及其簡(jiǎn)單性質(zhì)。
(3理解指數(shù)函數(shù)的概念、圖像及性質(zhì)。
(4理解對(duì)數(shù)的概念(含常用對(duì)數(shù)、自然對(duì)數(shù)及積、商、冪的對(duì)數(shù),掌握利用計(jì)算器求對(duì)數(shù)值的方法。
(5理解對(duì)數(shù)函數(shù)的概念、圖像及性質(zhì)。
(6能運(yùn)用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的知識(shí)解決有關(guān)實(shí)際問題。
高一數(shù)學(xué)教學(xué)計(jì)劃2
一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點(diǎn))
必修5第一章:解三角形;重點(diǎn)是正弦定理與余弦定理;難點(diǎn)是正弦定理與余弦定理的應(yīng)用;第二章:數(shù)列;重點(diǎn)是等差數(shù)列與等比數(shù)列的前n項(xiàng)的和;難點(diǎn)是等差數(shù)列與等比數(shù)列前n項(xiàng)的和與應(yīng)用;第三章:不等式;重點(diǎn)是一元二次不等式及其解法、二元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問題、基本不等式;難點(diǎn)是二元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問題及應(yīng)用;
必修2第一章:空間幾何體;重點(diǎn)是空間幾何體的三視圖和直觀圖及表面積與體積;難點(diǎn)是空間幾何體的三視圖;第二章:點(diǎn)、直線、平面之間的位置關(guān)系;重點(diǎn)與難點(diǎn)都是直線與平面平行及垂直的判定及其性質(zhì);第三章:直線與方程;重點(diǎn)是直線的傾斜角與斜率及直線方程;難點(diǎn)是如何選擇恰當(dāng)?shù)闹本方程求解題目;第四章:圓與方程;重點(diǎn)是圓的方程及直線與圓的位置關(guān)系;難點(diǎn)是直線與圓的位置關(guān)系;
二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)
較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識(shí)水平與基本學(xué)習(xí)方法比較扎實(shí),大部分的學(xué)生對(duì)學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺。
三、教學(xué)目的要求
1.通過對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問題和與測(cè)量及幾何計(jì)算有關(guān)的實(shí)際問題。
2.通過日常生活中的實(shí)例,了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項(xiàng)公式與前n項(xiàng)和的公式,能用有關(guān)的知識(shí)解決相應(yīng)的問題。
3.理解不等式(組)對(duì)于刻畫不等關(guān)系的意義和價(jià)值;掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡(jiǎn)單的二元線性規(guī)劃問題。
4.幾何學(xué)研究現(xiàn)實(shí)世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計(jì)算是認(rèn)識(shí)和探索幾何圖形及其性質(zhì)的方法。先從對(duì)空間幾何體的整體觀察入手,認(rèn)識(shí)空間圖形及其直觀圖的畫法;再以長(zhǎng)方體為載體,直觀認(rèn)識(shí)和理解空間中點(diǎn)、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語(yǔ)言表述有關(guān)平行、垂直的性質(zhì)與判定,對(duì)某些結(jié)論進(jìn)行論證。另外了解一些簡(jiǎn)單幾何體的表面積與體積的`計(jì)算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運(yùn)用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會(huì)數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施
積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時(shí)對(duì)學(xué)生的思想進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。
五、教學(xué)進(jìn)度
周次 | 課、章、節(jié) | 教 學(xué) 內(nèi) 容 | 備 注 |
1 | 1.1,1.2 | 解三角形 | |
2 | 1.2 | 解三角形 | |
3 | 2.1,2.2 | 數(shù)列的概念與簡(jiǎn)單表示法,等差數(shù)列 | |
4 | 2.3 | 等差數(shù)列的前n項(xiàng)和 | |
5 | 2.4,2.5 | 等比數(shù)列及前n項(xiàng)和 | |
6 | 2.5 | 考試 | |
7 | 3.1,3.2 | 不等關(guān)系與不等式,一元二次不等式及其解法 | |
8 | 3.3,3.4 | 二元一次不等式(組)與簡(jiǎn)單線性規(guī)劃問題,基本不等式 | |
9 | 考試,復(fù)習(xí) | ||
10 | 期中考試 | ||
11 | 1.1,1.2 | 空間幾何體的結(jié)構(gòu),三視圖,直觀圖 | |
12 | 1.3 | 空間幾何體的表面積與體積 | |
13 | 2.1,2.2 | 空間點(diǎn)、直線、平面的位置關(guān)系,直線、平面平行的判定及其性質(zhì) | |
14 | 2.3 | 直線、平面的判定及其性質(zhì) | |
15 | 3.1,3.2 | 直線的傾斜角與斜率,直線方程 | |
16 | 3.3 | 直線的交點(diǎn)坐標(biāo)與距離公式 | |
17 | 4.1,4.2 | 圓的方程,直線、圓的位置關(guān)系 | |
18 | 4.3 | 空間直角坐標(biāo)系 | |
19 | 復(fù)習(xí) | ||
20 | 考試 |
高一數(shù)學(xué)教學(xué)計(jì)劃3
一、具體目標(biāo):
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡(jiǎn)單的實(shí)際問題的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的`理性精神,體會(huì)數(shù)學(xué)
二、本學(xué)期要達(dá)到的教學(xué)目標(biāo)
1.雙基要求:
在基礎(chǔ)知識(shí)方面讓學(xué)生掌握高一有關(guān)的概念、性質(zhì)、法則、公式、定理以及由其內(nèi)容反映出來的數(shù)學(xué)思想和方法。在基本技能方面能按照一定的程序與步驟進(jìn)行運(yùn)算、處理數(shù)據(jù)、能使用計(jì)數(shù)器及簡(jiǎn)單的推理、畫圖。
2.能力培養(yǎng):
能運(yùn)用數(shù)學(xué)概念、思想方法,辨明數(shù)學(xué)關(guān)系,形成良好的思維品質(zhì);會(huì)根據(jù)法則、公式正確的進(jìn)行運(yùn)算、處理數(shù)據(jù),并能根據(jù)問題的情景設(shè)計(jì)運(yùn)算途徑;會(huì)提出、分析和解決簡(jiǎn)單的帶有實(shí)際意義的或在相關(guān)學(xué)科、生產(chǎn)和生活的數(shù)學(xué)問題,并進(jìn)行交流,形成數(shù)學(xué)的意思;從而通過獨(dú)立思考,會(huì)從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題,進(jìn)行探索和研究。
3. 思想教育:
三、進(jìn)度授課計(jì)劃及進(jìn)度表(略)
高中是人生中的關(guān)鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高中一年級(jí)上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃,希望大家喜歡。
高一數(shù)學(xué)教學(xué)計(jì)劃4
數(shù)學(xué)是利用符號(hào)語(yǔ)言研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門學(xué)科。數(shù)學(xué)網(wǎng)為大家推薦了高一數(shù)學(xué)教學(xué)計(jì)劃,請(qǐng)大家仔細(xì)閱讀,希望你喜歡。
一.學(xué)情分析
秋季起,湖南省高中新課程實(shí)驗(yàn)工作全面啟動(dòng),我校選用的數(shù)學(xué)教材是由人民教育出版社、課程教材研究所、中學(xué)數(shù)學(xué)課程教材研究開發(fā)中心編著的A版教材。與舊教材作一比較,發(fā)現(xiàn)本套教材是在繼承我國(guó)高中數(shù)學(xué)教科書編寫優(yōu)良傳統(tǒng)和基礎(chǔ)上積極創(chuàng)新,充分體現(xiàn)了數(shù)學(xué)的美學(xué)價(jià)值和人文精神。我校是一所普通的高中,在重點(diǎn)高中和私立學(xué)校擴(kuò)招的影響下,我校新生的素質(zhì)可想而知了。學(xué)生基礎(chǔ)差,學(xué)習(xí)興趣不大,怎樣調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣是本期在教學(xué)中要解決的重要問題。
二.教材分析
本教材有下列幾個(gè)特點(diǎn):
1、更加注重強(qiáng)調(diào)數(shù)學(xué)知識(shí)的實(shí)際背景和應(yīng)用,使教材具有很強(qiáng)的親和力,即以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)學(xué)生的興趣和美感,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),使學(xué)生興趣盎然地投入學(xué)習(xí)。
2. 以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識(shí),孕育創(chuàng)新精神,體現(xiàn)了問題性,本套教材的一個(gè)很大特點(diǎn)是每一章都可以看到觀察思考探索以及用問號(hào)性圖標(biāo)呈現(xiàn)的邊空等欄目,利用這些欄目,在知識(shí)形過過程的關(guān)鍵點(diǎn)上,在運(yùn)用數(shù)學(xué)思想方法產(chǎn)生解決問題策略的關(guān)節(jié)點(diǎn)上,在數(shù)學(xué)知識(shí)之間聯(lián)系的聯(lián)結(jié)點(diǎn)上,在數(shù)學(xué)問題變式的發(fā)散點(diǎn)上,在學(xué)生思維的最近發(fā)展區(qū)內(nèi),提出恰當(dāng)?shù)摹?duì)學(xué)生數(shù)學(xué)思維有適度啟發(fā)的問題,以引導(dǎo)學(xué)生的數(shù)學(xué)探究活動(dòng),切實(shí)轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式。
3. 信息技術(shù)是一種強(qiáng)有力的認(rèn)識(shí)工具,在教材的編寫過程體現(xiàn)了積極探索數(shù)學(xué)課程與信息技術(shù)的整合,幫助學(xué)生利用信息技術(shù)的力量,對(duì)數(shù)學(xué)的本質(zhì)作進(jìn)一步的理解。
4.關(guān)注學(xué)生數(shù)學(xué)發(fā)展的不同需求,為不同學(xué)生提供不同的發(fā)展空間, 促進(jìn)學(xué)生個(gè)性和潛能的發(fā)展提供了很好的平臺(tái)。例如教材通過設(shè)置觀察與猜想、閱讀與思考、探究與發(fā)現(xiàn)等欄目,一方面為學(xué)生提供了一些關(guān)于探究性、拓展性、思想性、時(shí)代性和應(yīng)用性的選學(xué)材料,拓展學(xué)生的數(shù)學(xué)活動(dòng)空間和擴(kuò)大學(xué)生的數(shù)學(xué)知識(shí)面,另一方面也體現(xiàn)了數(shù)學(xué)的科學(xué)價(jià)值,反映了數(shù)學(xué)在推動(dòng)其他科學(xué)和整個(gè)文化進(jìn)步中的作用。
5. 新教材注重?cái)?shù)學(xué)史滲透,特別是注重介紹我國(guó)對(duì)數(shù)學(xué)的貢獻(xiàn),充分體現(xiàn)數(shù)學(xué)的人文價(jià)值,科學(xué)價(jià)值和文化價(jià)值,激發(fā)了學(xué)生的愛國(guó)主義情感和民族自豪感。
三. 教學(xué)任務(wù)與目的
1.了解集合的含義與表示,理解集合間的'關(guān)系和運(yùn)算,感受集合語(yǔ)言的意義和作用。進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,會(huì)用集合與對(duì)應(yīng)的語(yǔ)言描述函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。了解函數(shù)的構(gòu)成要素,會(huì)求簡(jiǎn)單函數(shù)定義域和值域,會(huì)根據(jù)實(shí)際情境的不同需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù)。通過已學(xué)過的具體函數(shù),理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義,了解奇偶性的含義,會(huì)用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。根據(jù)某個(gè)主題,收集17世紀(jì)前后發(fā)生的一些對(duì)數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茲、歐拉等)的有關(guān)資料,了解函數(shù)概念的發(fā)展歷程。
2. 了解指數(shù)函數(shù)模型的實(shí)際背景。理解有理指數(shù)冪的含義,通過具體實(shí)例了解實(shí)數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算。理解指數(shù)函數(shù)的概念和意義,能借助計(jì)算器或計(jì)算機(jī)畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。在解決簡(jiǎn)單實(shí)際問題的過程中,體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型。理解對(duì)數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式能將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù);通過閱讀材料,了解對(duì)數(shù)的發(fā)現(xiàn)歷史以及對(duì)簡(jiǎn)化運(yùn)算的作用。通過具體實(shí)例,直觀了解對(duì)數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對(duì)數(shù)函數(shù)的概念,體會(huì)對(duì)數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計(jì)算器或計(jì)算機(jī)畫出具體對(duì)數(shù)函數(shù)的圖象,探索并了解對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。知道指數(shù)函數(shù)y=ax 與對(duì)數(shù)函數(shù)y=loga x互為反函數(shù)(a 0, a1)。通過實(shí)例,了解冪函數(shù)的概念;結(jié)合函數(shù)y=x, y=x2, y=x3, y=1/x, y=x1/2 的圖象,了解它們的變化情況。
3. 結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個(gè)數(shù),從而了解函數(shù)的零點(diǎn)與方程根的聯(lián)系.根據(jù)具體函數(shù)的圖象,能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法.利用計(jì)算工具,比較指數(shù)函數(shù)、對(duì)數(shù)函數(shù)以及冪函數(shù)間的增長(zhǎng)差異;結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對(duì)數(shù)增長(zhǎng)等不同函數(shù)類型增長(zhǎng)的含義.收集一些社會(huì)生活中普遍使用的函數(shù)模型,了解函數(shù)模型的廣泛應(yīng)用。
4. 利用實(shí)物模型、計(jì)算機(jī)軟件觀察大量空間圖形,認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu)。能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)使用材料(如紙板)制作模型,會(huì)用斜二側(cè)法畫出它們的直觀圖。通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。完成實(shí)習(xí)作業(yè),如畫出某些建筑的視圖與直觀圖(在不影響圖形特征的基礎(chǔ)上,尺寸、線條等不作嚴(yán)格要求)。了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式)。
5以長(zhǎng)方體為載體,使學(xué)生在直觀感知的基礎(chǔ)上,認(rèn)識(shí)空間中點(diǎn)、直線、平面之間的位置關(guān)系。通過對(duì)大量圖形的觀察、實(shí)驗(yàn)、操作和說理,使學(xué)生進(jìn)一步了解平行、垂直判定方法以及基本性質(zhì)。學(xué)會(huì)準(zhǔn)確地使用數(shù)學(xué)語(yǔ)言表述幾何對(duì)象的位置關(guān)系,體驗(yàn)公理化思想,培養(yǎng)邏輯思維能力,并用來解決一些簡(jiǎn)單的推理論證及應(yīng)用問題.
6. 在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素。理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點(diǎn)的直線斜率的計(jì)算公式。能根據(jù)斜率判定兩條直線平行或垂直。根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),體會(huì)斜截式與一次函數(shù)的關(guān)系。能用解方程組的方法求兩直線的交點(diǎn)坐標(biāo)。探索并掌握兩點(diǎn)間的距離公式、點(diǎn)到直線的距離公式,會(huì)求兩條平行直線間的距離。
四.教學(xué)措施和活動(dòng)
1. 加強(qiáng)集體備課與個(gè)人學(xué)習(xí),個(gè)人要加強(qiáng)自我學(xué)習(xí)和養(yǎng)成解數(shù)學(xué)題的習(xí)慣,提高個(gè)人專業(yè)素養(yǎng)和教學(xué)基本功。
2、注重培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,轉(zhuǎn)變學(xué)生學(xué)習(xí)數(shù)學(xué)的方式。學(xué)生是學(xué)習(xí)和發(fā)展的主人,教學(xué)中要體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生的自我學(xué)習(xí),自我教育與發(fā)展的意識(shí)和能力。改善學(xué)生的學(xué)習(xí)方式是高中數(shù)學(xué)新課程追求的基本理念。
3、了解新課程教學(xué)基本程序,掌握新課程教學(xué)常規(guī)策略,立足于提高課堂教學(xué)效率。
4、與學(xué)生多溝通、多交流,真正成為學(xué)生的良師益友。
5、要深刻理解領(lǐng)悟新教材的立意進(jìn)行教學(xué),而不要盲目地加深難度。
五.教學(xué)時(shí)間大致安排
集合與函數(shù)概念 13
基本初等函數(shù) 15
函數(shù)的應(yīng)用 8
空間幾何體 8
點(diǎn)、直線、平面的位置關(guān)系 10
直線與方程 9
圓與方程 9
高一數(shù)學(xué)教學(xué)計(jì)劃5
教學(xué)目標(biāo)
1通過對(duì)冪函數(shù)概念的學(xué)習(xí)以及對(duì)冪函數(shù)圖象和性質(zhì)的歸納與概括,讓學(xué)生體驗(yàn)數(shù)學(xué)概念的形成過程,培養(yǎng)學(xué)生的抽象概括能力。
2使學(xué)生理解并掌握冪函數(shù)的圖象與性質(zhì),并能初步運(yùn)用所學(xué)知識(shí)解決有關(guān)問題,培養(yǎng)學(xué)生的靈活思維能力。
3培養(yǎng)學(xué)生觀察、分析、歸納能力。了解類比法在研究問題中的作用。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):冪函數(shù)的性質(zhì)及運(yùn)用
難點(diǎn):冪函數(shù)圖象和性質(zhì)的發(fā)現(xiàn)過程
教學(xué)方法:問題探究法 教具:多媒體
教學(xué)過程
一、創(chuàng)設(shè)情景,引入新課
問題1:如果張紅購(gòu)買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購(gòu)買的水果量w(千克)之間有何關(guān)系?
(總結(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))
問題2:如果正方形的邊長(zhǎng)為a,那么正方形的面積 ,這里S是a的函數(shù)。 問題3:如果正方體的邊長(zhǎng)為a,那么正方體的體積 ,這里V是a的函數(shù)。 問題4:如果正方形場(chǎng)地面積為S,那么正方形的邊長(zhǎng) ,這里a是S的函數(shù) 問題5:如果某人 s內(nèi)騎車行進(jìn)了 km,那么他騎車的速度 ,這里v是t的函數(shù)。
以上是我們生活中經(jīng)常遇到的幾個(gè)數(shù)學(xué)模型,你能發(fā)現(xiàn)以上幾個(gè)函數(shù)解析式有什么共同點(diǎn)嗎?(右邊指數(shù)式,且底數(shù)都是變量) 這只是我們生活中常用到的一類函數(shù)的幾個(gè)具體代表,如果讓你給他們起一個(gè)名字的話,你將會(huì)給他們起個(gè)什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當(dāng)引導(dǎo):從自變量所處的位置這個(gè)角度)(引入新課,書寫課題)
二、新課講解
由學(xué)生討論,(教師可提示p=w可看成p=w1)總結(jié),即可得出:p=w, s=a2, a=s , v=t-1都是自變量的若干次冪的形式。
教師指出:我們把這樣的都是自變量的若干次冪的形式的函數(shù)稱為冪函數(shù)。
冪函數(shù)的定義:一般地,我們把形如 的函數(shù)稱為冪函數(shù)(power function),其中 是自變量, 是常數(shù)。 1冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學(xué)生回顧指數(shù)函數(shù)的概念) 結(jié)論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學(xué)中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別: 對(duì)冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù) 對(duì)指數(shù)函數(shù)來說,指數(shù)是自變量,底數(shù)是常數(shù) 例1判別下列函數(shù)中有幾個(gè)冪函數(shù)?
、 y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學(xué)生獨(dú)立思考、回答)
2冪函數(shù)具有哪些性質(zhì)?研究函數(shù)應(yīng)該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對(duì)數(shù)函數(shù)研究了哪些內(nèi)容?
(學(xué)生討論,教師引導(dǎo)。學(xué)生回答。)
3冪函數(shù)的定義域是否與對(duì)數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?
(學(xué)生小組討論,得到結(jié)論。引導(dǎo)學(xué)生舉例研究。結(jié)論:冪指數(shù) 不同,定義域并不完全相同,應(yīng)區(qū)別對(duì)待。)教師指出:冪函數(shù)y=xn中,當(dāng)n=0時(shí),其表達(dá)式y(tǒng)=x0=1;定義域?yàn)?-∞,0)U(0,+∞),特別強(qiáng)調(diào),當(dāng)x為任何非零實(shí)數(shù)時(shí),函數(shù)的值均為1,圖象是從點(diǎn)(0,1)出發(fā),平行于x軸的兩條射線,但點(diǎn)(0,1)要除外。)
例2寫出下列函數(shù)的.定義域,并指出它們的奇偶性:①y=x ②y= ③y=x ④y=x
(學(xué)生解答,并歸納解決辦法。引導(dǎo)學(xué)生與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)對(duì)照比較。引導(dǎo)學(xué)生具體問題具體分析,并作簡(jiǎn)單歸納:分?jǐn)?shù)指數(shù)應(yīng)化成根式,負(fù)指數(shù)寫成正數(shù)指數(shù)再寫出定義域。冪函數(shù)的奇偶性也應(yīng)具體分析。)
4上述函數(shù)①y=x ②y= ③y=x ④y=x 的單調(diào)性如何?如何判斷?
(學(xué)生思考,引導(dǎo)作圖可得。并加上y=x 和y=x-1圖象)接下來, 在同一坐標(biāo)系中學(xué)生作圖,教師巡視。將學(xué)生作圖用實(shí)物投影儀演示,指出優(yōu)點(diǎn)和錯(cuò)誤之處。教師利用幾何畫板演示。見后附圖1
讓學(xué)生觀察圖象,看單調(diào)性、以及還有哪些共同點(diǎn)?(學(xué)生思考,回答。教師注意學(xué)生敘述的嚴(yán)密性。)
教師總評(píng):冪函數(shù)的性質(zhì)
(1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過點(diǎn)(1,1),
(2)如果a>0,則冪函數(shù)的圖象通過原點(diǎn),并在區(qū)間[0,+∞)上是增函數(shù),
(3)如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一區(qū)間內(nèi),當(dāng)x從右邊趨向于原點(diǎn)時(shí),圖象在y軸右方無(wú)限地趨近y軸;當(dāng)x趨向于+∞,圖象在x軸上方無(wú)限地趨近x軸。
5通過觀察例1,在冪函數(shù)y=xa中,當(dāng)a是(1)正偶數(shù)、(2)正奇數(shù)時(shí),這一類函數(shù)有哪種性質(zhì)?
學(xué)生思考,教師講評(píng):(1)在冪函數(shù)y=xa中,當(dāng)a是正偶數(shù)時(shí),函數(shù)都是偶函數(shù),在第一象限內(nèi)是增函數(shù)。(2)在冪函數(shù)y=xa中,當(dāng)a是正奇數(shù)時(shí),函數(shù)都是奇函數(shù),在第一象限內(nèi)是增函數(shù)。
例3鞏固練習(xí) 寫出下列函數(shù)的定義域,并指出它們的奇偶性和單調(diào)性:①y=x ②y=x ③y=x 。
例4簡(jiǎn)單應(yīng)用1:比較下列各組中兩個(gè)值的大小,并說明理由:
、0.75 ,0.76 ;
、(-0.95) ,(-0.96) ;
、0.23 ,0.24 ;
、0.31 ,0.31
例5簡(jiǎn)單應(yīng)用2:冪函數(shù)y=(m -3m-3)x 在區(qū)間 上是減函數(shù),求m的值。
例6簡(jiǎn)單應(yīng)用2:
已知(a+1)<(3-2a) ,試求a的取值范圍。
課堂小結(jié)
今天的學(xué)習(xí)內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗(yàn)?
1、 冪函數(shù)的概念及其指數(shù)函數(shù)表達(dá)式的區(qū)別 2、 常見冪函數(shù)的圖象和冪函數(shù)的性質(zhì)。
布置作業(yè):
課本p.73 2、3、4、思考5
高一數(shù)學(xué)教學(xué)計(jì)劃6
一、 指導(dǎo)思想:
在新課程改革的教學(xué)理念下,以發(fā)展教育的觀念為指引,以學(xué)校和教導(dǎo)處的工作計(jì)劃為指南,改變教學(xué)觀念,改進(jìn)教學(xué)方法,更新教學(xué)手段,提高教學(xué)效率,提高學(xué)生的閱讀能力、解題能力,促進(jìn)學(xué)生學(xué)習(xí)態(tài)度、學(xué)習(xí)方式的轉(zhuǎn)變,培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探究、樂于合作的精神,注重學(xué)生數(shù)學(xué)素養(yǎng)的提高, 關(guān)注學(xué)生的思想情感和交流,培養(yǎng)學(xué)生的創(chuàng)新思維和創(chuàng)造能力,為學(xué)生的可持續(xù)發(fā)展奠定基礎(chǔ)。新課標(biāo)理念下的政治教學(xué)活動(dòng)應(yīng)該不同于傳統(tǒng)的課堂教學(xué),改變教師的教法和學(xué)生的學(xué)法是在教學(xué)活動(dòng)中體現(xiàn)最新教學(xué)理念的關(guān)鍵。“導(dǎo)學(xué)案”應(yīng)課堂教學(xué)改革與傳統(tǒng)教學(xué)模式的矛盾而生,它既可以將學(xué)生自主學(xué)習(xí)引入正軌,又將學(xué)生可以自主探究理解完成的知識(shí)點(diǎn)與題目在課下解決,這樣,課堂上教師就有足夠的時(shí)間與學(xué)生共同研究解決本節(jié)課的重點(diǎn)與難點(diǎn),從而提高了課堂效率。我們應(yīng)該認(rèn)識(shí)到改革是教學(xué)的生命,課程改革與課堂教學(xué)改革是一個(gè)不斷發(fā)展、不斷探索的過程。在這個(gè)過程中,要求教師能夠正確、深刻地理解新課程理念,辯證地分析和處理各種在課程改革中產(chǎn)生的觀念和做法,樹立正確的育人理念,開拓進(jìn)取,不斷尋求新的有效的方法促進(jìn)學(xué)生的全面發(fā)展。 二、教材特點(diǎn):
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(A版)》必修1、必修2,根據(jù)必修1、2設(shè)計(jì)的導(dǎo)學(xué)案。它在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性,辯證地分析和處理各種在課程改革中產(chǎn)生的觀念和做法,樹立正確的育人理念,開拓進(jìn)取,不斷尋求新的有效的方法促進(jìn)學(xué)生的全面發(fā)展。
三、學(xué)情分析:
本學(xué)期任教高一(35、36)班的數(shù)學(xué),(35、36)班是平衡班,部分學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情較高漲,比較自覺,能認(rèn)真完成作業(yè),但數(shù)學(xué)層次并不相同,部分同學(xué)基礎(chǔ)薄弱,缺乏學(xué)習(xí)數(shù)學(xué)的方法。
四、教學(xué)策略、教研活動(dòng):
1、落實(shí)提高課堂效率,導(dǎo)學(xué)案的設(shè)計(jì)目的是為了將學(xué)生的導(dǎo)學(xué)案與教師的集體備課設(shè)計(jì)為一體,第一、課前預(yù)習(xí)。教師設(shè)計(jì)此部分內(nèi)容之前必須針對(duì)本課
題的三維目標(biāo)與考綱認(rèn)真?zhèn)湔n,列出本節(jié)課的知識(shí)要點(diǎn),對(duì)于重難點(diǎn)做特殊標(biāo)記,并針對(duì)預(yù)習(xí)提綱給出的內(nèi)容設(shè)計(jì)預(yù)習(xí)檢測(cè)題,預(yù)習(xí)檢測(cè)題難度不易過高,與本課題的重難點(diǎn)相關(guān)的知識(shí)點(diǎn)有選擇性的錄入此處,讓學(xué)生在做此部分時(shí)不能感覺太簡(jiǎn)單了也不能感覺無(wú)從下手,要有一部分題目讓他能夠通過討論探究完成。第二,探究活動(dòng)。第三、課堂檢測(cè)。此處設(shè)置的題目難度深度一定比預(yù)習(xí)檢測(cè)部分要更難更深。此部分不要求所有的學(xué)生都在課前做。從此處開始分“才”完成,有能力的同學(xué)可以提前嘗試著做,做題慢的同學(xué)可以先不必看,學(xué)生按照自己的情況自行決定。第四,拓展延伸。這里出現(xiàn)的題目屬于拔高題,一般很少有學(xué)生在課前能夠做對(duì),所以此處也不要求學(xué)生課前做,當(dāng)然不排除有的同學(xué)想要挑戰(zhàn)一下,這是提倡并且大力表?yè)P(yáng)的`。第五,反思總結(jié)。學(xué)生利用這部分一方面可以小結(jié)本節(jié)課的內(nèi)容,另一方面可以對(duì)自己本課題從預(yù)習(xí)探究到課堂探究各個(gè)環(huán)節(jié)進(jìn)行反思,便于日后改進(jìn)。上課時(shí)要明確重點(diǎn)、難點(diǎn),重點(diǎn)要突出,難點(diǎn)要分散,并且難點(diǎn)要解決好。課堂講新課的時(shí)間一定要控制在20分鐘之內(nèi),最好能在10分鐘之內(nèi)解決問題,多給時(shí)間學(xué)生練習(xí)或進(jìn)行與學(xué)習(xí)有關(guān)的活動(dòng)。
2、做到課后教學(xué)反思
上完課之后需要思考三個(gè)問題:我這節(jié)課上得如何有沒有要糾正與改進(jìn)的?有誰(shuí)的課比我還優(yōu)秀?怎樣上這節(jié)課更好、最好?并在學(xué)案、備課筆記上做好記錄,為以后的教育教學(xué)提供參考。
3、落實(shí)好備課電子化,為加快對(duì)試驗(yàn)課的理解和掌握,積極探索教改進(jìn)程,建立備課組資料庫(kù),備課組成員要積極借助網(wǎng)絡(luò)信息收集和篩選資料存庫(kù),發(fā)揮集體智慧,在備課組會(huì)議上整理,及時(shí)應(yīng)用到具體教學(xué)中。注重學(xué)案導(dǎo)學(xué),編好用好導(dǎo)學(xué)案。
4、積極聽有經(jīng)驗(yàn)的教師的課,認(rèn)真改進(jìn)課堂教學(xué)上的薄弱環(huán)節(jié)。注重研究教師如何講、注重研究學(xué)生如何學(xué),積極推進(jìn)新課改,提高課堂效率。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生交流等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣。
3、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
4、扎實(shí)基礎(chǔ)的同時(shí)重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
5、落實(shí)抓好平時(shí)的一周一限時(shí)訓(xùn)練,一周一綜合,注重知識(shí)的滲透 6、落實(shí)競(jìng)賽輔導(dǎo):主要利用下午第三節(jié)時(shí)間,一個(gè)星期進(jìn)行一至兩次輔導(dǎo)。
高一數(shù)學(xué)教學(xué)計(jì)劃7
教材教法分析
本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修(2)第2章第三節(jié)的第一節(jié)課.該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化.教材通過一個(gè)實(shí)際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識(shí)的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識(shí)的探究過程中.同時(shí),通過對(duì)《空間直角坐標(biāo)系》的學(xué)習(xí)和掌握將對(duì)今后學(xué)習(xí)本節(jié)內(nèi)容《空間兩點(diǎn)間的距離》和選修2-1內(nèi)容《空間中的向量與立體幾何》有著鋪墊作用.由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系.
學(xué)情分析
一方面學(xué)生通過對(duì)空間幾何體:柱、錐、臺(tái)、球的學(xué)習(xí),處理了空間中點(diǎn)、線、面的關(guān)系,初步掌握了簡(jiǎn)單幾何體的`直觀圖畫法,因此頭腦中已建立了一定的空間思維能力.另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對(duì)建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認(rèn)識(shí),因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想.這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ).
教學(xué)目標(biāo)
1.知識(shí)與技能
、偻ㄟ^具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性
、诹私饪臻g直角坐標(biāo)系,掌握空間點(diǎn)的坐標(biāo)的確定方法和過程
、鄹惺茴惐人枷朐谔骄啃轮R(shí)過程中的作用
2.過程與方法
、俳Y(jié)合具體問題引入,誘導(dǎo)學(xué)生探究
②類比學(xué)習(xí),循序漸進(jìn)
3.情感態(tài)度與價(jià)值觀
通過用類比的數(shù)學(xué)思想方法探究新知識(shí),使學(xué)生感受新舊知識(shí)的聯(lián)系和研究事物從低維到高維的一般方法.通過實(shí)際問題的引入和解決,讓學(xué)生體會(huì)數(shù)學(xué)的實(shí)踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的作用,不斷地拓展自己的思維空間.
教學(xué)重點(diǎn)
本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對(duì)今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點(diǎn)確立為空間直角坐標(biāo)系的理解.
教學(xué)難點(diǎn)
通過建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,確定空間點(diǎn)的坐標(biāo)。
先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會(huì)用坐標(biāo)刻畫平面內(nèi)任意點(diǎn)的位置的方法,進(jìn)而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出第三根軸的建立,進(jìn)而感受逐步發(fā)展得到空間直角坐標(biāo)系的建立,再逐步掌握利用坐標(biāo)表示空間任意點(diǎn)的位置.總得來說,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論.
高一數(shù)學(xué)教學(xué)計(jì)劃8
一、學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在的主要問題
我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面:
1、進(jìn)一步學(xué)習(xí)條件不具備。高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問題等?陀^上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。
2、被動(dòng)學(xué)習(xí)。許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒有掌握學(xué)習(xí)主動(dòng)權(quán)。表現(xiàn)在不定計(jì)劃,坐等上課,課前沒有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識(shí)的來龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒能專心聽課,對(duì)要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、對(duì)自己學(xué)習(xí)數(shù)學(xué)的好差(或成。┎涣私,更不會(huì)去進(jìn)行反思總結(jié),甚至根本不關(guān)心自己的成敗。
4、不能計(jì)劃學(xué)習(xí)行動(dòng),不會(huì)安排學(xué)習(xí)生活,更不能調(diào)節(jié)控制學(xué)習(xí)行為,不能隨時(shí)監(jiān)控每一步驟,對(duì)學(xué)習(xí)結(jié)果不會(huì)正確地自我評(píng)價(jià)。
5、不重視基礎(chǔ)。一些“自我感覺良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對(duì)難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。
此外,還有許多學(xué)生數(shù)學(xué)學(xué)習(xí)興趣不濃厚,不具備應(yīng)用數(shù)學(xué)的意識(shí)和能力,對(duì)數(shù)學(xué)思想方法重視不夠或掌握情況不好,缺乏將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,缺乏準(zhǔn)確運(yùn)用數(shù)學(xué)語(yǔ)言來分析問題和表達(dá)思想的能力,思維缺乏靈活性、批判性和發(fā)散性等。所有這些都嚴(yán)重制約著學(xué)生數(shù)學(xué)成績(jī)的提高。
二、教學(xué)策略思考與實(shí)踐
針對(duì)我校高一學(xué)生的具體情況,我在高一數(shù)學(xué)新教材教學(xué)實(shí)踐與探究中,貫徹“因人施教,因材施教”原則。以學(xué)法指導(dǎo)為突破口;著重在“讀、講、練、輔、作業(yè)”等方面下功夫,取得一定效果。
加強(qiáng)學(xué)法指導(dǎo),培養(yǎng)良好學(xué)習(xí)習(xí)慣。良好的學(xué)習(xí)習(xí)慣包括制定計(jì)劃、課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。
制定計(jì)劃使學(xué)習(xí)目的明確,時(shí)間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動(dòng)學(xué)生主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力。但計(jì)劃一定要切實(shí)可行,既有長(zhǎng)遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。
課前自學(xué)是學(xué)生上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ)。課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)主動(dòng)權(quán)。自學(xué)不能搞走過場(chǎng),要講究質(zhì)量,力爭(zhēng)在課前把教材弄懂,上課著重聽老師講課的思路,把握重點(diǎn),突破難點(diǎn),盡可能把問題解決在課堂上。
上課是理解和掌握基本知識(shí)、基本技能和基本方法的關(guān)鍵環(huán)節(jié)!皩W(xué)然后知不足”,課前自學(xué)過的同學(xué)上課更能專心聽課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細(xì)刻,什么地方可以一帶而過,該記的.地方才記下來,而不是全抄全錄,顧此失彼。
及時(shí)復(fù)習(xí)是高效率學(xué)習(xí)的重要一環(huán),通過反復(fù)閱讀教材,多方查閱有關(guān)資料,強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,將所學(xué)的新知識(shí)與有關(guān)舊知識(shí)聯(lián)系起來,進(jìn)行分析比較,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記上,使對(duì)所學(xué)的新知識(shí)由“懂”到“會(huì)”。
獨(dú)立作業(yè)是學(xué)生通過自己的獨(dú)立思考,靈活地分析問題、解決問題,進(jìn)一步加深對(duì)所學(xué)新知識(shí)的理解和對(duì)新技能的掌握過程。這一過程是對(duì)學(xué)生意志毅力的考驗(yàn),通過運(yùn)用使學(xué)生對(duì)所學(xué)知識(shí)由“會(huì)”到“熟”。
解決疑難是指對(duì)獨(dú)立完成作業(yè)過程中暴露出來對(duì)知識(shí)理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過點(diǎn)撥使思路暢通,補(bǔ)遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯(cuò)的作業(yè)再做一遍。對(duì)錯(cuò)誤的地方?jīng)]弄清楚要反復(fù)思考,實(shí)在解決不了的要請(qǐng)教老師和同學(xué),并要經(jīng)常把易錯(cuò)的地方拿出來復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識(shí),長(zhǎng)期堅(jiān)持使對(duì)所學(xué)知識(shí)由“熟”到“活”。
系統(tǒng)小結(jié)是學(xué)生通過積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識(shí)和發(fā)展認(rèn)識(shí)能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與有關(guān)資料,通過分析、綜合、類比、概括,揭示知識(shí)間的內(nèi)在聯(lián)系。以達(dá)到對(duì)所學(xué)知識(shí)融會(huì)貫通的目的。經(jīng)常進(jìn)行多層次小結(jié),能對(duì)所學(xué)知識(shí)由“活”到“悟”。
課外學(xué)習(xí)包括閱讀課外書籍與報(bào)刊,參加學(xué)科競(jìng)賽與講座,走訪高年級(jí)同學(xué)或老師交流學(xué)習(xí)心得等。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),它不僅能豐富學(xué)生的文化科學(xué)知識(shí),加深和鞏固課內(nèi)所學(xué)的知識(shí),而且能滿足和發(fā)展他們的興趣愛好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作能力,激發(fā)求知欲與學(xué)習(xí)熱情。
1、讀。俗話說“不讀不憤,不憤不悱”。首先要讀好概念。讀概念要“咬文嚼字”,掌握概念內(nèi)涵和外延及辨析概念。例如,集合是數(shù)學(xué)中的一個(gè)原始概念,是不加定義的。它從常見的“我校高一年級(jí)學(xué)生”、“我家的家用電器”、“太平洋、大西洋、印度洋、北冰洋”及“自然數(shù)”等事物中抽象出來,但集合的概念又不同于特殊具體的實(shí)物集合,集合的確定及性質(zhì)特征是由一組公理來界定的。“確定性、無(wú)序性、互異性”常常是“集合”的代名詞。
再如象限角的概念,要向?qū)W生解釋清楚,角的始邊與x軸的非負(fù)半軸重合和與x軸的正半軸重合的細(xì)微差別;根據(jù)定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導(dǎo)學(xué)生從多層次,多角度去認(rèn)識(shí)和掌握數(shù)學(xué)概念。其次讀好定理公式和例題。閱讀定理公式時(shí),要分清條件和結(jié)論。如高一新教材(上)等比數(shù)列的前n項(xiàng)和Sn。有q≠1和q=1兩種情形;對(duì)數(shù)計(jì)算中的一個(gè)公式,其中要求讀例題時(shí),要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規(guī)范。如在解對(duì)數(shù)函數(shù)題時(shí),要注意“真數(shù)大于0”的隱含條件;解有關(guān)二次函數(shù)題時(shí)要注意二次項(xiàng)系數(shù)不為零的隱含條件等。讀書要鼓勵(lì)學(xué)生相互議論。俗語(yǔ)說“議一議知是非,爭(zhēng)一爭(zhēng)明道理”。例如,讓學(xué)生議論數(shù)列與數(shù)集的聯(lián)系與區(qū)別。數(shù)列與數(shù)的集合都是具有某種共同屬性的全體。數(shù)列中的數(shù)是有順序的,而數(shù)集中的元素是沒有順序的;同一個(gè)數(shù)可以在數(shù)列中重復(fù)出現(xiàn),而數(shù)集中的元素是沒有重復(fù)的(相同的數(shù)在數(shù)集中算作同一個(gè)元素)。在引導(dǎo)學(xué)生閱讀時(shí),教師要經(jīng)常幫助學(xué)生歸類、總結(jié),盡可能把相關(guān)知識(shí)表格化。如一元二次不等式的解情況列表,三角函數(shù)的圖象與性質(zhì)列表等,便于學(xué)生記憶掌握。
2、講。外國(guó)有一位教育家曾經(jīng)說過:教師的作用在于將“冰冷”的知識(shí)加溫后傳授給學(xué)生。講是實(shí)踐這種傳授的最直接和最有效的教學(xué)手段。首先講要注意循序漸進(jìn)的原則。循序漸進(jìn),防止急躁。由于學(xué)生年齡較小,閱歷有限,為數(shù)不少的高中學(xué)生容易急躁,有的同學(xué)貪多求快,囫圇吞棗,有的同學(xué)想靠幾天“沖刺”一蹴而就,有的取得一點(diǎn)成績(jī)便洋洋自得,遇到挫折又一蹶不振。針對(duì)這些情況,教師要讓學(xué)生懂得學(xué)習(xí)是一個(gè)長(zhǎng)期的鞏固舊知識(shí)、發(fā)現(xiàn)新知識(shí)的積累過程,決非一朝一夕可以完成,為什么高中要上三年而不是三天!許多優(yōu)秀的同學(xué)能取得好成績(jī),其中一個(gè)重要原因是他們的基本功扎實(shí),他們的閱讀、書寫、運(yùn)算技能達(dá)到了自動(dòng)化或半自動(dòng)化的熟練程度。
每堂新授課中,在復(fù)習(xí)必要知識(shí)和展示教學(xué)目標(biāo)的基礎(chǔ)上,老師著重揭示知識(shí)的產(chǎn)生、形成、發(fā)展過程,解決學(xué)生疑惑。比如在學(xué)習(xí)兩角和差公式之前,學(xué)生已經(jīng)掌握五套誘導(dǎo)公式,可以將求任意角三角函數(shù)值問題轉(zhuǎn)化為求某一個(gè)銳角三角函數(shù)值的問題。此時(shí)教師應(yīng)進(jìn)一步引導(dǎo)學(xué)生:對(duì)于一些半特殊的教(750度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函數(shù)就呼之欲出了,極大激發(fā)了學(xué)生的學(xué)習(xí)興趣。講課要注意從簡(jiǎn)單到復(fù)雜的過程,要讓學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí)。鼓勵(lì)學(xué)生應(yīng)積極、主動(dòng)參與課堂活動(dòng)的全過程,教、學(xué)同步。讓學(xué)生自己真正做學(xué)習(xí)的主人。
例如,講解函數(shù)的圖象應(yīng)從振幅、周期、相位依次各自進(jìn)行變化,然后再綜合,并盡可能利用多媒體輔助教學(xué),使學(xué)生容易接受。其次講要注重突出數(shù)學(xué)思想方法的教學(xué),注重學(xué)生數(shù)學(xué)能力的培養(yǎng)。例如講到等比數(shù)列的概念、通項(xiàng)公式、等比中項(xiàng)、等比數(shù)列的性質(zhì)、等比數(shù)列的前n項(xiàng)和?梢砸龑(dǎo)學(xué)生對(duì)照等差數(shù)列的相應(yīng)的內(nèi)容,比較聯(lián)系。讓學(xué)生更清楚等差數(shù)列和等比數(shù)列是兩個(gè)對(duì)偶概念。
3、練。數(shù)學(xué)是以問題為中心。學(xué)生怎么應(yīng)用所學(xué)知識(shí)和方法去分析問題和解決問題,必須進(jìn)行練習(xí)。首先練習(xí)要重視基礎(chǔ)知識(shí)和基本技能,切忌過早地進(jìn)行“高、深、難”練習(xí)。鑒于目前我校高一的生源現(xiàn)狀,基礎(chǔ)訓(xùn)練是很有必要的。課本的例題、練習(xí)題和習(xí)題要求學(xué)生要題題過關(guān);補(bǔ)充的練習(xí),應(yīng)先是課本中練習(xí)及習(xí)題的簡(jiǎn)單改造題,這有利于學(xué)生鞏固基礎(chǔ)知識(shí)和基本技能。讓學(xué)生通過認(rèn)真思考可以完成。即讓學(xué)生“跳一跳可以摸得著”。一定要讓學(xué)生在練習(xí)中強(qiáng)化知識(shí)、應(yīng)用方法,在練習(xí)中分步達(dá)到教學(xué)目標(biāo)要求并獲得再練習(xí)的興趣和信心。例如根據(jù)數(shù)列前幾項(xiàng)求通項(xiàng)公式練習(xí),在新教材高一(上)P111例題2上簡(jiǎn)單地做一些改造,便可以變化出各種求解通項(xiàng)公式方法的題目;再如數(shù)列復(fù)習(xí)參考題第12題;就是一個(gè)改造性很強(qiáng)的數(shù)學(xué)題,教師可以在上面做很多文章。其次要講練結(jié)合。學(xué)生要練習(xí),老師要評(píng)講。多講解題思路和解題方法,其中包括成功的與錯(cuò)誤的。特別是注意要充分暴露錯(cuò)誤的思維發(fā)生過程,在課堂造就民主氣氛,充分傾聽學(xué)生意見,哪怕走點(diǎn)“彎路”,吃點(diǎn)“苦頭”;另一方面,則引導(dǎo)學(xué)生各抒己見,評(píng)判各方面之優(yōu)劣,最后選出大家公認(rèn)的最佳方法。還可適當(dāng)讓學(xué)生涉及一些一題多解的題目,拓展思維空間,培養(yǎng)學(xué)生思維的多面性和深刻性。
例如,高一(下)P26例5求證?梢詮囊贿呑C到另一邊,也可以作差、作商比較,還可以用分析法來證明;再如解不等式。常用的解法是將無(wú)理不等式化為有理不等式求解。但還可以利用換元法,將無(wú)理不等式化為關(guān)于t的一元二次不等式求解。除此之外,亦可利用圖象法求解。在同一直角坐標(biāo)系中作出它們的圖像。求兩圖在x軸上方的交點(diǎn)的橫坐標(biāo)為2,最終得解。要求學(xué)生掌握通解通法同時(shí),也要講究特殊解法。最后練習(xí)要增強(qiáng)應(yīng)用性。例如用函數(shù)、不等式、數(shù)列、三角、向量等相關(guān)知識(shí)解實(shí)際應(yīng)用題。引導(dǎo)學(xué)生學(xué)會(huì)建立數(shù)學(xué)模型,并應(yīng)用所學(xué)知識(shí),研究此數(shù)學(xué)模型。
4、作業(yè)。鑒于學(xué)生現(xiàn)有的知識(shí)、能力水平差異較大,為了使每一位學(xué)生都能在自己的“最近發(fā)展區(qū)”更好地學(xué)習(xí)數(shù)學(xué),得到最好的發(fā)展,制定“分層次作業(yè)”。即將作業(yè)難度和作業(yè)量由易到難分成A、B、C三檔,由學(xué)生根據(jù)自身學(xué)習(xí)情況自主選擇,然后在充分尊重學(xué)生意見的基礎(chǔ)上再進(jìn)行協(xié)調(diào)。以后的時(shí)間里,根據(jù)學(xué)生實(shí)際學(xué)習(xí)情況,隨時(shí)進(jìn)行調(diào)整。
5、輔導(dǎo)。輔導(dǎo)指兩方面,培優(yōu)和補(bǔ)差。對(duì)于數(shù)學(xué)尖子生,主要培養(yǎng)其自學(xué)能力、獨(dú)立鉆研精神和集體協(xié)作能力。具體做法:成立由三至六名學(xué)生組成的討論組,教師負(fù)責(zé)為他們介紹高考、競(jìng)賽參考書,并定期提供學(xué)習(xí)資料和咨詢、指導(dǎo)。下面著重談?wù)勓a(bǔ)差工作。輔導(dǎo)要鼓勵(lì)學(xué)生多提出問題,對(duì)于不能提高的同學(xué)要從平時(shí)作業(yè)及練習(xí)考試中發(fā)現(xiàn)問題,跟蹤到人,跟蹤到具體知識(shí)。要有計(jì)劃,有針對(duì)性和目的性地輔導(dǎo),切忌冷飯重抄和無(wú)目標(biāo)性。要及時(shí)檢查輔導(dǎo)效果,做到學(xué)生人人知道自己存在問題(越具體越好),老師對(duì)輔導(dǎo)學(xué)生情況要了如指掌。對(duì)學(xué)有困難的同學(xué),要耐心細(xì)致輔導(dǎo),還要注意鼓勵(lì)學(xué)生戰(zhàn)勝自己,提高自已的分析和解決問題的能力。
高一數(shù)學(xué)教學(xué)計(jì)劃9
一、學(xué)情分析
這節(jié)課是在學(xué)生已經(jīng)學(xué)過的二維的平面直角坐標(biāo)系的基礎(chǔ)上的推廣,是以后學(xué)習(xí)空間向量等內(nèi)容的基礎(chǔ)。
二、教學(xué)目標(biāo)
1. 讓學(xué)生經(jīng)歷用類比的數(shù)學(xué)思想方法探索空間直角坐標(biāo)系的建立方法,進(jìn)一步體會(huì)數(shù)學(xué)概念、方法產(chǎn)生和發(fā)展的過程,學(xué)會(huì)科學(xué)的思維方法。
2. 理解空間直角坐標(biāo)系與點(diǎn)的坐標(biāo)的意義,掌握由空間直角坐標(biāo)系內(nèi)的點(diǎn)確定其坐標(biāo)或由坐標(biāo)確定其在空間直角坐標(biāo)系內(nèi)的點(diǎn),認(rèn)識(shí)空間直角坐標(biāo)系中的點(diǎn)與坐標(biāo)的關(guān)系。
3. 進(jìn)一步培養(yǎng)學(xué)生的空間想象能力與確定性思維能力。
三、教學(xué)重點(diǎn):在空間直角坐標(biāo)系中點(diǎn)的坐標(biāo)的確定。
四、教學(xué)難點(diǎn):通過建立空間直角坐標(biāo)系利用點(diǎn)的坐標(biāo)來確定點(diǎn)在空間內(nèi)的位置
五、教學(xué)過程
(一)、問題情景
1. 確定一個(gè)點(diǎn)在一條直線上的位置的方法。
2. 確定一個(gè)點(diǎn)在一個(gè)平面內(nèi)的位置的方法。
3. 如何確定一個(gè)點(diǎn)在三維空間內(nèi)的位置?
例:如圖,在房間(立體空間)內(nèi)如何確定一個(gè)同學(xué)的頭所在位置?
在學(xué)生思考討論的基礎(chǔ)上,教師明確:確定點(diǎn)在直線上,通過數(shù)軸需要一個(gè)數(shù);確定點(diǎn)在平面內(nèi),通過平面直角坐標(biāo)系需要兩個(gè)數(shù)。那么,要確定點(diǎn)在空間內(nèi),應(yīng)該需要幾個(gè)數(shù)呢?通過類比聯(lián)想,容易知道需要三個(gè)數(shù)。要確定同學(xué)的頭的位置,知道同學(xué)的頭到地面的距離、到相鄰的兩個(gè)墻面的距離即可。
(此時(shí)學(xué)生只是意識(shí)到需要三個(gè)數(shù),還不能從坐標(biāo)的角度去思考,因此,教師在這兒要重點(diǎn)引導(dǎo))
教師明晰:在地面上建立直角坐標(biāo)系xOy,則地面上任一點(diǎn)的位置只須利用x,y就可確定。為了確定不在地面內(nèi)的電燈的位置,須要用第三個(gè)數(shù)表示物體離地面的高度,即需第三個(gè)坐標(biāo)z.因此,只要知道電燈到地面的距離、到相鄰的兩個(gè)墻面的距離即可。例如,若這個(gè)電燈在平面xOy上的射影的.兩個(gè)坐標(biāo)分別為4和5,到地面的距離為3,則可以用有序數(shù)組(4,5,3)確定這個(gè)電燈的位置(如圖26-3)。
這樣,仿照初中平面直角坐標(biāo)系,就建立了空間直角坐標(biāo)系O-xyz,從而確定了空間點(diǎn)的位置。
(二)、建立模型
1. 在前面研究的基礎(chǔ)上,先由學(xué)生對(duì)空間直角坐標(biāo)系予以抽象概括,然后由教師給出準(zhǔn)確的定義。
從空間某一個(gè)定點(diǎn)O引三條互相垂直且有相同單位長(zhǎng)度的數(shù)軸,這樣就建立了空間直角坐標(biāo)系O-xyz,點(diǎn)O叫作坐標(biāo)原點(diǎn),x軸、y軸、z軸叫作坐標(biāo)軸,這三條坐標(biāo)軸中每?jī)蓷l確定一個(gè)坐標(biāo)平面,分別稱為xOy平面,yOz平面,zOx平面。
教師進(jìn)一步明確:
(1)在空間直角坐標(biāo)系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個(gè)坐標(biāo)系為右手坐標(biāo)系,課本中建立的坐標(biāo)系都是右手坐標(biāo)系。
(2)將空間直角坐標(biāo)系O-xyz畫在紙上時(shí),x軸與y軸、x軸與z軸成135,而y軸垂直于z軸,y軸和z軸的單位長(zhǎng)度相等,但x軸上的單位長(zhǎng)度等于y軸和z軸上的單位長(zhǎng)度的 ,這樣,三條軸上的單位長(zhǎng)度直觀上大致相等。
2. 空間直角坐標(biāo)系O-xyz中點(diǎn)的坐標(biāo)。
思考:在空間直角坐標(biāo)系中,空間任意一點(diǎn)A與有序數(shù)組(x,y,z)有什么樣的對(duì)應(yīng)關(guān)系?
在學(xué)生充分討論思考之后,教師明確:
(1)過點(diǎn)A作三個(gè)平面分別垂直于x軸,y軸,z軸,它們與x軸、y軸、z軸分別交于點(diǎn)P,Q,R,點(diǎn)P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,這樣,對(duì)空間任意點(diǎn)A,就定義了一個(gè)有序數(shù)組(x,y,z)。
(2)反之,對(duì)任意一個(gè)有序數(shù)組(x,y,z),按照剛才作圖的相反順序,在坐標(biāo)軸上分別作出點(diǎn)P,Q,R,使它們?cè)趚軸、y軸、z軸上的坐標(biāo)分別是x,y,z,再分別過這些點(diǎn)作垂直于各自所在的坐標(biāo)軸的平面,這三個(gè)平面的交點(diǎn)就是所求的點(diǎn)A.
這樣,在空間直角坐標(biāo)系中,空間任意一點(diǎn)A與有序數(shù)組(x,y,z)之間就建立了一種一一對(duì)應(yīng)關(guān)系:A (x,y,z)。
教師進(jìn)一步指出:空間直角坐標(biāo)系O-xyz中任意點(diǎn)A的坐標(biāo)的概念
對(duì)于空間任意點(diǎn)A,作點(diǎn)A在三條坐標(biāo)軸上的射影,即經(jīng)過點(diǎn)A作三個(gè)平面分別垂直于x軸、y軸和z軸,它們與x軸、y軸、z軸分別交于點(diǎn)P,Q,R,點(diǎn)P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,我們把有序數(shù)組(x,y,z)叫作點(diǎn)A的坐標(biāo),記為A(x,y,z)。
(三)、例 題 與 練 習(xí)
1. 課本135頁(yè)例1.
注意:在分析中緊扣坐標(biāo)定義,強(qiáng)調(diào)三個(gè)步驟,第一步從原點(diǎn)出發(fā)沿x軸正方向移動(dòng)5個(gè)單位,第二步沿與y軸平行的方向向右移動(dòng)4個(gè)單位,第三步沿與z軸平行的方向向上移動(dòng)6個(gè)單位(如圖26-5)。
2. 課本135頁(yè)例2
探究: (1)在空間直角坐標(biāo)系中,坐標(biāo)平面xOy,xOz,yOz上點(diǎn)的坐標(biāo)有什么特點(diǎn)?
(2)在空間直角坐標(biāo)系中,x軸、y軸、z軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?
解:(1)xOy平面、xOz平面、yOz平面內(nèi)的點(diǎn)的坐標(biāo)分別形如(x,y,0),(x,0,z),(0,y,z)。
(2)x軸、y軸、z軸上點(diǎn)的坐標(biāo)分別形如(x,0,0),(0,y,0),(0,0,z)。
3. 已知長(zhǎng)方體ABCD-ABCD的邊長(zhǎng)AB=12,AD=8,AA=5,以這個(gè)長(zhǎng)方體的頂點(diǎn)A為坐標(biāo)原點(diǎn),射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個(gè)長(zhǎng)方體各個(gè)頂點(diǎn)的坐標(biāo)。
注意:此題可以由學(xué)生口答,教師點(diǎn)評(píng)。
解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。
討論:若以C點(diǎn)為原點(diǎn),以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角坐標(biāo)系,那么各頂點(diǎn)的坐標(biāo)又是怎樣的呢?
得出結(jié)論:建立不同的坐標(biāo)系,所得的同一點(diǎn)的坐標(biāo)也不同。
[練 習(xí)]
1. 在空間直角坐標(biāo)系中,畫出下列各點(diǎn):A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。
2. 已知:長(zhǎng)方體ABCD-ABCD的邊長(zhǎng)AB=12,AD=8,AA=7,以這個(gè)長(zhǎng)方體的頂點(diǎn)B為坐標(biāo)原點(diǎn),射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個(gè)長(zhǎng)方體各個(gè)頂點(diǎn)的坐標(biāo)。
3. 寫出坐標(biāo)平面yOz上yOz平分線上的點(diǎn)的坐標(biāo)滿足的條件。
(四)、拓展延伸
分別寫出點(diǎn)(1,1,1)關(guān)于各坐標(biāo)軸和各個(gè)坐標(biāo)平面對(duì)稱的點(diǎn)的坐標(biāo)。
六、評(píng)價(jià)設(shè)計(jì)
1、 練習(xí) : 課本P136. 1、2、3
2、 課堂作業(yè): 課本P138. 1、2
高一數(shù)學(xué)教學(xué)計(jì)劃10
本學(xué)期擔(dān)任高一X1、X2兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有X人,通過一期的高中學(xué)習(xí),學(xué)習(xí)能力更加參差不齊,但兩個(gè)班的學(xué)生整體水平較高;部分學(xué)生學(xué)習(xí)習(xí)慣不好,不能正確評(píng)價(jià)自己,這給教學(xué)工作帶來了一定的難度,特別X1班部分同學(xué)學(xué)習(xí)方法問題嚴(yán)重:只做,不歸納總結(jié),學(xué)習(xí)效率低。學(xué)校要求高,教學(xué)任務(wù)艱巨。為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計(jì)劃。
一、教學(xué)目標(biāo).
(一)情意目標(biāo)
(1)通過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
。2)提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會(huì)數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識(shí)。(3)在探究三角函數(shù)、平面向量,體驗(yàn)獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會(huì)交流、相互評(píng)價(jià),提高學(xué)生的合作意識(shí)
(4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅(jiān)定學(xué)習(xí)信念和學(xué)習(xí)信心。
(5)還時(shí)空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會(huì),在發(fā)展他們思維能力的同時(shí),發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
。6)讓學(xué)生體驗(yàn)“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。
。ǘ┠芰σ
1、培養(yǎng)學(xué)生記憶能力。
。1)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對(duì)數(shù)學(xué)本質(zhì)問題的背景事實(shí)及具體數(shù)據(jù)的記憶。
。3)通過揭示弧度、向量有關(guān)概念、三角公式和三角函數(shù)的圖象,培養(yǎng)記憶能力。
2、培養(yǎng)學(xué)生的運(yùn)算能力。
。1)通過三角函數(shù)求值與化簡(jiǎn)問題的訓(xùn)練,培養(yǎng)學(xué)生的運(yùn)算能力。
(2)加強(qiáng)對(duì)概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運(yùn)算能力。
。3)通過三角函數(shù)、平面向量的教學(xué),提高學(xué)生是運(yùn)算過程具有明晰性、合理性、簡(jiǎn)捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運(yùn)算能力,促使知識(shí)間的滲透和遷移。
。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運(yùn)算能力。
3、培養(yǎng)學(xué)生的思維能力。
。1)通過對(duì)簡(jiǎn)易邏輯的教學(xué),培養(yǎng)學(xué)生思維的周密性及思維的邏輯性。
。2)通過不等式、函數(shù)的一題多解、多題一解,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
(3)通過三角函數(shù)、函數(shù)有關(guān)性質(zhì)的引伸、推廣,培養(yǎng)學(xué)生的創(chuàng)造性思維。
。4)加強(qiáng)知識(shí)的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的能力。
。5)通過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學(xué)生掌握轉(zhuǎn)化思想方法。
(三)知識(shí)目標(biāo)
二、教學(xué)要求
(一)三角函數(shù)
1理解任意角的概念、弧度的意義;能正確地進(jìn)行弧度與角度的換算.
2掌握任意角的正弦、余弦、正切的定義.并會(huì)利用與單位圓有關(guān)的三角函數(shù)線表示正弦、余弦和正切;了解任意角的余切、正割、余割的定義;掌握同角三角函數(shù)的基本關(guān)系式,掌握正弦、余弦的誘導(dǎo)公式.
3.掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通過公式的推導(dǎo),了解它們的內(nèi)在聯(lián)系,從而培養(yǎng)邏輯推理能力
4能正確運(yùn)用三角公式,進(jìn)行簡(jiǎn)單三角函數(shù)式的化簡(jiǎn)、求值及恒等式證明(包括引出半角、積化和差、和差化積公式,但不要求記憶).
5.會(huì)用與單位圓有關(guān)的三角函數(shù)線畫正弦函數(shù)、正切函數(shù)的圖象.并在此基礎(chǔ)上由誘導(dǎo)公式畫出余弦函數(shù)的圖象;了解周期函數(shù)與最小正周期的意義;了解奇偶函數(shù)的意義;并通過它們的圖象理解正弦函數(shù)、余弦函數(shù)、正切函數(shù)的性質(zhì)以及簡(jiǎn)化這些函數(shù)圖象的繪制過程;會(huì)用“五點(diǎn)法”畫正弦函數(shù)、余弦函數(shù)和函數(shù)y=Asin(ωx+φ)的簡(jiǎn)圖.理解A,ω、φ的物理意義.
6.會(huì)由已知三角函數(shù)值求角.并會(huì)用符號(hào)arcsinx、arccosx、arctanx表示角。
(二)平面向量
1理解向量的概念,掌握向量的幾何表示,了解共線問量的概念
2掌握向量的加法與減法
3掌握實(shí)數(shù)與向量的積,理解兩個(gè)向量共線的充要條件
4了解平面向量的基本定理,理解平面向量的坐標(biāo)的概念,掌握平面向量的坐標(biāo)運(yùn)算.
5掌握平面向量的數(shù)量積及其幾何意義,了解用平面向量的數(shù)量積可以處理有關(guān)長(zhǎng)度、角度和垂直的問題,掌握向量垂直的條件
6掌握平面兩點(diǎn)間的距離公式,掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練運(yùn)用;掌握平移公式
7掌握正弦定理、余弦定理,并能運(yùn)用它們解斜三角形,能利用計(jì)算器解決解斜三角形的汁算問題通過解三角形的應(yīng)用的教學(xué),繼續(xù)提高運(yùn)用所學(xué)知識(shí)解決實(shí)際問題的能力
8通過“實(shí)習(xí)作業(yè)解三角形在測(cè)量中的應(yīng)用”,提高應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力和實(shí)際操作的能力
9通過“研究性學(xué)習(xí)課題:向量在物理中的應(yīng)用”,學(xué)會(huì)提出問題,明確探究方向,體驗(yàn)數(shù)學(xué)活動(dòng)的過程·培養(yǎng)創(chuàng)新精神和應(yīng)用能力,學(xué)會(huì)交流.
三、教學(xué)重點(diǎn)
1、掌握同角三角函數(shù)的基本關(guān)系式
2.掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;3.用“五點(diǎn)法”畫正弦函數(shù)、余弦函數(shù)和函數(shù)y=Asin(ωx+φ)的簡(jiǎn)圖。
4.掌握向量的加法與減法,掌握平面向量的坐標(biāo)運(yùn)算.掌握實(shí)數(shù)與向量的.積,理解兩個(gè)向量共線的充要條件。掌握正弦定理、余弦定理,并能運(yùn)用它們解斜三角形
四、教學(xué)難點(diǎn)
1.函數(shù)y=Asin(ωx+φ)的簡(jiǎn)圖
2.會(huì)用與單位圓有關(guān)的三角函數(shù)線畫正弦函數(shù)、正切函數(shù)的圖象
3.掌握正弦定理、余弦定理,并能運(yùn)用它們解斜三角形
五、工作措施.
1、抓好課堂教學(xué),提高教學(xué)效益。
課堂教學(xué)是教學(xué)的主要環(huán)節(jié),因此,抓好課堂教學(xué)是教學(xué)之根本,是大面積提高數(shù)學(xué)成績(jī)的主途徑。
(1)、扎實(shí)落實(shí)集體備課,通過集體討論,抓住教學(xué)內(nèi)容的實(shí)質(zhì),形成較好的教學(xué)方案,擬好典型例題、練習(xí)題、周練題、章考題。
(2)、加大課堂教改力度,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力。最有效的學(xué)習(xí)是自主學(xué)習(xí),因此,課堂教學(xué)要大力培養(yǎng)學(xué)生自主探究的精神,通過“知識(shí)的產(chǎn)生,發(fā)展”,逐步形成知識(shí)體系;通過“知識(shí)質(zhì)疑、展活”遷移知識(shí)、應(yīng)用知識(shí),提高能力。同時(shí)要養(yǎng)成學(xué)生良好的學(xué)習(xí)習(xí)慣,不斷提高學(xué)生的數(shù)學(xué)素養(yǎng),從而提高數(shù)學(xué)素養(yǎng),并大面積提高數(shù)學(xué)成績(jī)。
2、加強(qiáng)課外輔導(dǎo),提高競(jìng)爭(zhēng)能力。
課外輔導(dǎo)是課堂的有力補(bǔ)充,是提高數(shù)學(xué)成績(jī)的有力手段。
。1)加強(qiáng)數(shù)學(xué)數(shù)學(xué)競(jìng)賽的指導(dǎo),提高學(xué)習(xí)興趣。
(2)加強(qiáng)學(xué)習(xí)方法的指導(dǎo),全方面提高他們的數(shù)學(xué)能力,特別是自主能力,并通過強(qiáng)化訓(xùn)練,不斷提高解題能力,使他們的數(shù)學(xué)成績(jī)更上一城樓。
。2)、加強(qiáng)對(duì)邊緣生的輔導(dǎo)。邊緣生是一個(gè)班級(jí)教學(xué)成敗的關(guān)鍵,因此,我將下大力氣輔導(dǎo)邊緣生,通過個(gè)別加集體的方法,并定時(shí)單獨(dú)測(cè)試,面批面改,從而使他們的數(shù)學(xué)成績(jī)有質(zhì)的飛躍。
3、搞好單元考試、階段性考試的分析。
學(xué)生只有通過不斷的練習(xí)才能提高成績(jī),單元考試、階段性考試是最好的練習(xí),每次都要做好分析,并指導(dǎo)學(xué)生糾錯(cuò)。在分析過程中要遵循自主的思維習(xí)慣,使學(xué)生真正理解。
六、進(jìn)度安排.
第四章三角函數(shù)
§4.1角的概念的推廣………………………………………………………………………………2課時(shí)
§4.2弧度制…………………………………………………………………………………………2課時(shí)
§4.3任意角的三角函數(shù)……………………………………………………………………………2課時(shí)
§4.4同角三角函數(shù)的關(guān)系…………………………………………………………………………2課時(shí)
§4.5誘導(dǎo)公式………………………………………………………………………………………2課時(shí)
§4.6兩角和與差三角函數(shù)…………………………………………………………………………7課時(shí)
§4.7二倍角公式……………………………………………………………………………………3課時(shí)
§4.8三角函數(shù)的圖象與性質(zhì)………………………………………………………………………4課時(shí)
§4.9函數(shù)y=sin(ωx+φ)的圖象…………………………………………………………………3課時(shí)
§4.10正切函數(shù)的圖象與性質(zhì)………………………………………………………………………3課時(shí)
§4.11給值求角………………………………………………………………………………………4課時(shí)
第五章平面向量…………………
§5.1向量……………………………………………………………………………………………1課時(shí)
§5.2向量的加法及減法……………………………………………………………………………2課時(shí)
§5.3實(shí)數(shù)與向量的積………………………………………………………………………………2課時(shí)
§5.4平面向量的坐標(biāo)運(yùn)算…………………………………………………………………………2課時(shí)
§5.5線段的定比分點(diǎn)………………………………………………………………………………2課時(shí)
§5.6平面向量的坐標(biāo)運(yùn)算…………………………………………………………………………2課時(shí)
§5.7平面向量的數(shù)量積及運(yùn)算律…………………………………………………………………2課時(shí)
§5.8平面向量數(shù)量積的坐標(biāo)表示…………………………………………………………………2課時(shí)
§5.9正弦定理、余弦定理…………………………………………………………………………2課時(shí)
§5.10解斜三角形應(yīng)用舉例…………………………………………………………………………2課時(shí)
§5.11實(shí)習(xí)作業(yè)………………………………………………………………………………………2課時(shí)
第六章不等式…………………
§6.1不等式的性質(zhì)…………………………………………………………………………………3課時(shí)
§6.2均值定理………………………………………………………………………………………2課時(shí)
§6.3不等式的證明…………………………………………………………………………………6課時(shí)
§6.4不等式的解法…………………………………………………………………………………3課時(shí)
期末復(fù)習(xí)20課時(shí)
高一數(shù)學(xué)教學(xué)計(jì)劃11
新學(xué)期已開始,為使新學(xué)期的工作有條不紊的進(jìn)行,使教學(xué)工作更加科學(xué)合理,使學(xué)生對(duì)知識(shí)的接收更加得心應(yīng)手,特訂新學(xué)期個(gè)人教學(xué)計(jì)劃如下
一,指導(dǎo)思想
加強(qiáng)現(xiàn)代教育理論的學(xué)習(xí),提高自身的素質(zhì),轉(zhuǎn)變教育觀念,以教育科研為先導(dǎo),以培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力為重點(diǎn),深化課堂教學(xué)改革,大力推進(jìn)素質(zhì)教育。
二,教材分析
本冊(cè)教材具有以下幾個(gè)明顯的特點(diǎn):
1。為學(xué)生的數(shù)學(xué)學(xué)習(xí)構(gòu)筑起點(diǎn)
教科書提供了大量數(shù)學(xué)活動(dòng)的線索,作為所有學(xué)生從事數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。目的是使學(xué)生能夠在所提供的學(xué)習(xí)情景中,通過探索與交流等活動(dòng),獲得必要的發(fā)展。
2,向?qū)W生提供現(xiàn)實(shí),有趣,富有挑戰(zhàn)性的學(xué)習(xí)素材
教科書從學(xué)生實(shí)際出發(fā),用他們熟悉或感興趣的問題情景引入學(xué)習(xí)主題,并提供了眾多有趣而富有數(shù)學(xué)含義的問題,以展開數(shù)學(xué)探究。
3,為學(xué)生提供探索,交流的時(shí)間與空間
教科書依據(jù)學(xué)生已有的知識(shí)背景和活動(dòng)經(jīng)驗(yàn),提供了大量的操作,思考與交流的機(jī)會(huì),幫助學(xué)生通過思考與交流,梳理所學(xué)的知識(shí),建立符合個(gè)體認(rèn)知特點(diǎn)的知識(shí)結(jié)構(gòu)。
4,展現(xiàn)數(shù)學(xué)知識(shí)的形成與應(yīng)用過程
教科書采用"問題情境—建立模型—解釋,應(yīng)用與拓展"的模式展開,有利于學(xué)生更好地理解數(shù)學(xué),應(yīng)用數(shù)學(xué),增強(qiáng)學(xué)好數(shù)學(xué)的信心。
5,滿足不同學(xué)生的發(fā)展需求
教科書中"讀一讀"給學(xué)生以更多了解數(shù)學(xué),研究數(shù)學(xué)的機(jī)會(huì)。教科書中的`習(xí)題分為兩類:一類面向全體學(xué)生;另一類面向有更多數(shù)學(xué)需求的學(xué)生。
三,教材的重點(diǎn)和難點(diǎn)
本冊(cè)教材從內(nèi)容上看,教學(xué)重點(diǎn)是三角形和四邊形的性質(zhì)定理
和判定定理的應(yīng)用以及一元二次方程的應(yīng)用。教學(xué)難點(diǎn)是對(duì)反
比例函數(shù)的理解及應(yīng)用;用試驗(yàn)或模擬試驗(yàn)的方法估計(jì)一些復(fù)
雜的隨機(jī)時(shí)間發(fā)生的概率。
四,教學(xué)措施:
1,根據(jù)學(xué)生實(shí)際,創(chuàng)造性地使用教材,積極開發(fā)和利用各種教學(xué)資源,為學(xué)生提供豐富多彩的學(xué)習(xí)素材。
2,加強(qiáng)直觀教學(xué),充分利用教具,學(xué)具等多媒體教學(xué),以豐富學(xué)生感知認(rèn)識(shí)對(duì)象的途徑,促使他們更加樂意接近數(shù)學(xué),更好地理解數(shù)學(xué)。
3,關(guān)注學(xué)生的個(gè)體差異,有效的實(shí)施有差異的教學(xué),使每個(gè)學(xué)生都能得到充分的發(fā)展。
4,加強(qiáng)學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),主要培養(yǎng)學(xué)生的書寫,認(rèn)真分析問題的習(xí)慣。同時(shí)注意學(xué)習(xí)態(tài)度的培養(yǎng)。
五,時(shí)間安排
4月1日——4月20日一元二次方程
5月16日——5月31日反比例函數(shù)
6月1日——6月10日頻率與概率
6月11日——7月11日復(fù)習(xí)考試
>高中數(shù)學(xué)教學(xué)計(jì)劃10
本學(xué)期我擔(dān)任高一(5)、(16)班的數(shù)學(xué)教學(xué)工作,本學(xué)期的教學(xué)工作計(jì)劃如下。
一、指導(dǎo)思想:
。1)隨著素質(zhì)教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會(huì)主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會(huì)主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識(shí)和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計(jì)的初步知識(shí),計(jì)算機(jī)的使用等。
。2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。
。3)根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
。4)使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
。5)學(xué)會(huì)通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實(shí)際問題的思維方法和操作方法。
。6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二、學(xué)情分析及相關(guān)措施:
高一作為起始年級(jí),作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長(zhǎng),面對(duì)新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識(shí)水平和實(shí)際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
。1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
。2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn)。所列基礎(chǔ)知識(shí)依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識(shí)與重點(diǎn)內(nèi)容,要充分重視基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識(shí)要求,能力要求及新趨勢(shì),這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。。
。3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對(duì)所學(xué)知識(shí)進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
(4)讓學(xué)生通過單元考試,檢測(cè)自己的實(shí)際應(yīng)用能力,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競(jìng)選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
。6)注意運(yùn)用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運(yùn)用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
高一數(shù)學(xué)教學(xué)計(jì)劃12
一、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項(xiàng)基本要求,立足于基礎(chǔ)知識(shí)和基本技能的教學(xué),注意參透教學(xué)思想和方法,針對(duì)學(xué)生實(shí)際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法。
數(shù)學(xué)目標(biāo)要求
1、理解集合及充要條件的有關(guān)知識(shí),掌握不等式的性質(zhì),一元二次不等式、絕對(duì)值不等的解法,掌握函數(shù)的概念及指數(shù)函數(shù),對(duì)函數(shù)和幕函數(shù)的性質(zhì)和圖象。
2、理解角的概念的推廣和三角函數(shù)的定義,掌握基本的三角函數(shù)公式和三角函數(shù)巔峰性質(zhì)、圖像,理解三角函數(shù)的周期性
3、理解數(shù)列的'概念,掌握等差數(shù)列和等比數(shù)列的性質(zhì),并會(huì)求等差數(shù)列、等比數(shù)列前n項(xiàng)的和。
4、掌握平面向量時(shí)有關(guān)概念和運(yùn)算,掌握直線和圓的方程的求法。
5、掌握空間幾何直線、平面之間的位置關(guān)系及其判定方法。
6、掌握概率與統(tǒng)計(jì)初步里的計(jì)數(shù)原理,理解三種抽樣方法,會(huì)求簡(jiǎn)單問題的概率。
二、教學(xué)建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識(shí)的內(nèi)外結(jié)構(gòu),熟練掌握知識(shí)和邏輯體系,細(xì)致領(lǐng)悟教材改革的精髓,逐步明確教材教學(xué)形式,內(nèi)容和教學(xué)目標(biāo)的影響。
2、準(zhǔn)確吧握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,把握新大綱對(duì)知識(shí)點(diǎn)的基本要求,防止自覺不自覺地對(duì)教材加深加寬。同時(shí),在整體上要重視數(shù)學(xué)應(yīng)用;重視教學(xué)思想方法的參透。
3、樹立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實(shí)施的出發(fā)點(diǎn)和歸宿,教師必須面向全體學(xué)生因材施材,以學(xué)生為賬戶提,構(gòu)建新的認(rèn)識(shí)體系,營(yíng)造有利于學(xué)生的氛圍。
4、發(fā)揮教材的多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí);組織好研究性課題的教學(xué),讓學(xué)生感受社會(huì)生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。
5、加強(qiáng)課堂研究,科學(xué)設(shè)計(jì)教學(xué)方法。根據(jù)教材的內(nèi)容和特征,實(shí)行啟發(fā)式和討論式教學(xué)。發(fā)揚(yáng)教學(xué)民主,師生雙方親切合作,交流互動(dòng),讓學(xué)生感受、理解知識(shí)的產(chǎn)生和發(fā)展的過程。根據(jù)材料個(gè)章節(jié)的重難點(diǎn)制定教學(xué)專題,積累教學(xué)經(jīng)驗(yàn)。
6、落實(shí)課外活動(dòng)內(nèi)容,組織和加強(qiáng)數(shù)學(xué)興趣小組的活動(dòng)內(nèi)容,加強(qiáng)對(duì)高層次學(xué)生的競(jìng)賽輔導(dǎo),培養(yǎng)拔尖人才。
三、教學(xué)進(jìn)度
高一上學(xué)期
高一下學(xué)期
周次內(nèi)容
周次內(nèi)容
1-4復(fù)習(xí)初中知識(shí)和集合1-3數(shù)列
5充要條件
4-6平面向量
6-7不等式7-9直線的方程
8-10
函數(shù)10期中考試
11
期中考試11-12圓的方程
12-14指數(shù)函數(shù)與對(duì)數(shù)函數(shù)13-15
立體幾何
15-18三角函數(shù)16-18概率與統(tǒng)計(jì)初步
19-20期末、總復(fù)習(xí)、考試19-20
總復(fù)習(xí)與期末考試
總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。
高一數(shù)學(xué)教學(xué)計(jì)劃13
、
、瘢虒W(xué)內(nèi)容解析
本節(jié)課的教學(xué)內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡(jiǎn)單應(yīng)用.教學(xué)重點(diǎn)是指數(shù)函數(shù)的圖像與性質(zhì).
這是指數(shù)函數(shù)在本章的位置.
指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì)后,學(xué)習(xí)的第一個(gè)新的初等函數(shù).它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實(shí)踐.指數(shù)函數(shù)的學(xué)習(xí),一方面可以進(jìn)一步深化對(duì)函數(shù)概念的理解,另一方面也為研究對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ).因此,本節(jié)課的學(xué)習(xí)起著承上啟下的作用,也是學(xué)生體驗(yàn)數(shù)學(xué)思想與方法應(yīng)用的過程.
指數(shù)函數(shù)模型在貸款利率的計(jì)算以及考古中年代的測(cè)算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,因此,學(xué)習(xí)這部分知識(shí)還有著一定的現(xiàn)實(shí)意義.
、颍虒W(xué)目標(biāo)設(shè)置
1.學(xué)生能從具體實(shí)例中概括指數(shù)函數(shù)典型特征,并用數(shù)學(xué)符號(hào)表示,建構(gòu)指數(shù)函數(shù)的概念.
2.學(xué)生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個(gè)冪的大小.
3.學(xué)生運(yùn)用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗(yàn)研究函數(shù)的一般方法.
4.在探究活動(dòng)中,學(xué)生通過獨(dú)立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習(xí)慣,提升自主學(xué)習(xí)能力.
Ⅲ.學(xué)生學(xué)情分析
授課班級(jí)學(xué)生為南京師大附中實(shí)驗(yàn)班學(xué)生.
1.學(xué)生已有認(rèn)知基礎(chǔ)
學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),對(duì)函數(shù)有了初步的認(rèn)識(shí).學(xué)生已經(jīng)完成了指數(shù)取值范圍的擴(kuò)充,具備了進(jìn)行指數(shù)運(yùn)算的能力.學(xué)生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗(yàn).學(xué)生數(shù)學(xué)基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨(dú)立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣.
2.達(dá)成目標(biāo)所需要的認(rèn)知基礎(chǔ)
學(xué)生需要對(duì)研究的目標(biāo)、方法和途徑有初步的認(rèn)識(shí),需要具備較好的歸納、猜想和推理能力.
3.難點(diǎn)及突破策略
難點(diǎn):1. 對(duì)研究函數(shù)的一般方法的認(rèn)識(shí).
2. 自主選擇底數(shù)不當(dāng)導(dǎo)致歸納所得結(jié)論片面.
突破策略:
1.教師引導(dǎo)學(xué)生先明確研究的內(nèi)容與方法,從總體上認(rèn)識(shí)研究的目標(biāo)與手段.
2.組織匯報(bào)交流活動(dòng),展現(xiàn)思維過程,相互評(píng)價(jià),相互啟發(fā),促進(jìn)反思.
3.對(duì)猜想進(jìn)行適當(dāng)?shù)刈C明或說明,合情推理與演繹推理相結(jié)合.
、簦虒W(xué)策略設(shè)計(jì)
根據(jù)學(xué)生已有學(xué)習(xí)基礎(chǔ),為提升學(xué)生的學(xué)習(xí)能力,本節(jié)課的教學(xué),采用自主學(xué)習(xí)方式.通過教師引領(lǐng)學(xué)生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認(rèn)識(shí)研究的目標(biāo)與策略,在研究的過程中逐漸完善研究的方法與手段.
學(xué)生的自主學(xué)習(xí),具體落實(shí)在三個(gè)環(huán)節(jié):
(1)建構(gòu)指數(shù)函數(shù)概念時(shí),學(xué)生自主舉例,歸納特征,并用符號(hào)表示,討論底數(shù)的取值范圍,完善概念.
(2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時(shí),學(xué)生自選底數(shù),開展自主研究,并通過匯報(bào)交流相互提升.
(3)性質(zhì)應(yīng)用階段,學(xué)生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用.
研究函數(shù)的性質(zhì),可以從形和數(shù)兩個(gè)方面展開.從圖形直觀和數(shù)量關(guān)系兩個(gè)方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進(jìn)而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時(shí)應(yīng)用函數(shù)解析式輔以必要的說明和證明.
Ⅴ.教學(xué)過程設(shè)計(jì)
1.創(chuàng)設(shè)情境建構(gòu)概念
師:我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個(gè)變量之間的關(guān)系.你能用函數(shù)的觀點(diǎn)分析下面的例子嗎?
師:大家知道細(xì)胞分裂的規(guī)律嗎?(出示情境問題)
[情境問題1]某細(xì)胞分裂時(shí),由一個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),4個(gè)分裂成8個(gè),……如果細(xì)胞分裂x次,相應(yīng)的細(xì)胞個(gè)數(shù)為y,如何描述這兩個(gè)變量的關(guān)系?
[情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%.如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個(gè)變量的關(guān)系?
[師生活動(dòng)]引導(dǎo)學(xué)生分析,找到兩個(gè)變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0.84x.
師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點(diǎn)?你能再舉幾個(gè)例子嗎?
〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點(diǎn)?能否寫成一般形式?
[設(shè)計(jì)意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實(shí)際生活的聯(lián)系.引導(dǎo)學(xué)生從具體實(shí)例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學(xué)符號(hào)表示.初步得到y(tǒng)=ax這個(gè)形式后,引導(dǎo)學(xué)生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu).指數(shù)范圍擴(kuò)充到實(shí)數(shù)后,關(guān)注x∈R時(shí),y=ax是否始終有意義,因此規(guī)定a>0.a≠1并不是必須的,常函數(shù)在高等數(shù)學(xué)里是基本函數(shù),也有重要的意義.為了使指數(shù)函數(shù)與對(duì)數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1.此處不需對(duì)此解釋,只要補(bǔ)充說“1的任何次方總是1,所以通常還規(guī)定a≠1”.
[師生活動(dòng)]學(xué)生舉例,教師引導(dǎo)學(xué)生觀察,其共同特點(diǎn)是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax.
[教學(xué)預(yù)設(shè)]學(xué)生能舉出具體的例子——y=3x,y=0.5x….如出現(xiàn)y=(-2)x最好,更便于引發(fā)對(duì)a的討論,但一般不會(huì)出現(xiàn).進(jìn)而提出這類函數(shù)一般形式y(tǒng)=ax.
方案1:
生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))
師:板書學(xué)生舉例(稍停頓),能舉一個(gè)不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)
生:函數(shù)y=0.5x,y= x,y=(-2)x,y=1x…
師:板書學(xué)生舉例(停頓),好像有不同意見.
生:底數(shù)不能取負(fù)數(shù).
師:為什么?
生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實(shí)數(shù)了.
師:我們已經(jīng)將指數(shù)的取值范圍擴(kuò)充到了R,我們希望這些函數(shù)的定義域就是R.
(若沒有學(xué)生注意到底數(shù)的取值范圍,可引導(dǎo)學(xué)生關(guān)注例舉函數(shù)的定義域.若有同學(xué)提出情境中函數(shù)的定義域應(yīng)為N+,師:我們已經(jīng)將指數(shù)的取值范圍擴(kuò)充到了R,函數(shù)y=2x和y=0.84x中,能否將定義域擴(kuò)充為R?你們所舉的例子中,定義域是否為R?)
師:這些函數(shù)有什么共同特點(diǎn)?
生:都有指數(shù)運(yùn)算.底數(shù)是常數(shù),自變量在指數(shù)位置.
(若有學(xué)生舉出類似y=max的例子,引導(dǎo)學(xué)生觀察,它依然具有自變量在指數(shù)位置的特征.而刻畫這一特點(diǎn)的最簡(jiǎn)單形式就是y=ax,從而初步建立函數(shù)模型y=ax,初步體會(huì)基本初等函數(shù)的作用.)
師:具備上述特征的函數(shù)能否寫成一般形式?
生:可以寫成y=ax(a>0).
師:當(dāng)a=1時(shí),函數(shù)就是常數(shù)函數(shù)y=1.對(duì)于這個(gè)函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個(gè)新函數(shù).(出示指數(shù)函數(shù)定義)
方案2:
生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))
師:板書學(xué)生舉例(稍停頓),能舉一個(gè)不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)
生:函數(shù)y=0.5x,y= x,…
師:這些函數(shù)的自變量是什么?它們有什么共同特點(diǎn)?
生:(可用文字語(yǔ)言或符號(hào)語(yǔ)言概括)都有指數(shù)運(yùn)算.底數(shù)是常數(shù),自變量在指數(shù)位置.可以寫成y=ax.
師:y=ax中,自變量是x,底數(shù)a是常數(shù).以上例子的不同之處,是底數(shù)不同.那你覺得底數(shù)的取值范圍是什么呢?
生:底數(shù)不能取負(fù)數(shù).
師:為什么?
生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實(shí)數(shù)了.
師:為了研究的方便,我們要求底數(shù)a>0.當(dāng)a=1時(shí),函數(shù)就是常數(shù)函數(shù)y=1.對(duì)于這個(gè)函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個(gè)新函數(shù).(出示指數(shù)函數(shù)定義)
[階段小結(jié)]一般地,函數(shù)y=ax(a>0且a≠1)稱為指數(shù)函數(shù).它的定義域是R.
[意圖分析]概念教學(xué)應(yīng)當(dāng)讓學(xué)生感受形成過程,了解知識(shí)的來龍去脈,那種直接拋出定義后輔以“三項(xiàng)注意”的'做法剝奪了學(xué)生參與概念形成的過程.此處不宜糾纏于y=22x是否為指數(shù)函數(shù)等細(xì)枝末節(jié).指數(shù)函數(shù)的基本特征是自變量出現(xiàn)在指數(shù)上,應(yīng)促使學(xué)生對(duì)概念本質(zhì)的理解.指數(shù)函數(shù)概念的形成,經(jīng)歷了一個(gè)由粗到細(xì),由特殊到一般,由具體到抽象的漸進(jìn)過程,這樣更加符合人們的認(rèn)知心理.
2.實(shí)驗(yàn)探索匯報(bào)交流
(1)構(gòu)建研究方法
師:我們定義了一個(gè)新的函數(shù),接下來,我們研究什么呢?
生:研究函數(shù)的性質(zhì).
〖問題2你打算如何研究指數(shù)函數(shù)的性質(zhì)?
[設(shè)計(jì)意圖]學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、函數(shù)的表示方法與函數(shù)的一般性質(zhì),對(duì)函數(shù)有了初步的認(rèn)識(shí).在此認(rèn)知基礎(chǔ)上,引導(dǎo)學(xué)生自己提出所要研究的問題,尋找研究問題的方法.開始的問題較寬泛,教師要縮小問題范圍,用提示語(yǔ)口頭提問啟發(fā).教師應(yīng)充分尊重學(xué)生的思維個(gè)性,提供自主探究的平臺(tái),通過匯報(bào)交流活動(dòng)達(dá)成共識(shí)實(shí)現(xiàn)殊途同歸.中學(xué)階段,特別是高一新授課階段,提倡學(xué)生以形象思維作為抽象思維的支撐.
[師生活動(dòng)]師生經(jīng)過討論,解決啟發(fā)性提示問題,確定研究的內(nèi)容與方法.
[教學(xué)預(yù)設(shè)]學(xué)生能夠根據(jù)已有知識(shí)和經(jīng)驗(yàn),在教師的啟發(fā)引導(dǎo)下,明確研究的內(nèi)容以及研究的方法.部分學(xué)生會(huì)提出先作出具體函數(shù)圖象,觀察圖象,概括性質(zhì),并進(jìn)而歸納出一般函數(shù)的圖象的分布特征等性質(zhì).另一部分學(xué)生可能從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗(yàn)證.
師:(稍等片刻)我們一般要研究哪些性質(zhì)呢?
生:變量取值范圍(定義域、值域)、單調(diào)性、奇偶性.
師:(板書學(xué)生回答)怎樣研究這些性質(zhì)呢?
生:先畫出函數(shù)圖象,觀察圖象,分析函數(shù)性質(zhì).
生:先研究幾個(gè)具體的指數(shù)函數(shù),再研究一般情況.
師:板書“畫圖觀察”,“取特殊值”
(若沒有學(xué)生提出從特殊到一般的思路.師:底數(shù)a的取值不同,函數(shù)的性質(zhì)可能也會(huì)有不同.一次函數(shù)y=kx(k≠0)中,一次項(xiàng)系數(shù)k不同,函數(shù)性質(zhì)就不同.底數(shù)a可以取無(wú)數(shù)多個(gè)值,那我們?cè)趺崔k呢?)
(若有學(xué)生通過對(duì)y=2x解析式的分析,得到了性質(zhì),并提出從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗(yàn)證.師:你的想法也很有道理,不妨試一試.(仍引導(dǎo)學(xué)生從具體指數(shù)函數(shù)圖象入手.))
[意圖分析]學(xué)習(xí)的過程就是一個(gè)不斷地提出問題、解決問題的過程.提出問題比解決問題更重要,給學(xué)生提供由自己提出問題、確定研究方法的機(jī)會(huì),逐漸學(xué)會(huì)研究問題,促進(jìn)能力發(fā)展.
(2)自主探究匯報(bào)交流
師:我們確定了要研究的對(duì)象和具體做法,下面可以開始研究指數(shù)函數(shù)的性質(zhì)了.
〖問題3選取數(shù)據(jù),畫出圖象,觀察特點(diǎn),歸納性質(zhì).
[設(shè)計(jì)意圖]若直接規(guī)定底數(shù)取值,對(duì)于為什么要以y=2x,y=3x,y=0.5x為例,為什么要根據(jù)底數(shù)的大小分類討論,缺乏合理的解釋,學(xué)生對(duì)于圖象的認(rèn)識(shí)是被動(dòng)的.若在探究前經(jīng)討論確定底數(shù)取值,由于學(xué)生認(rèn)知水平的差異,仍可能會(huì)造成部分學(xué)生被動(dòng)接受.學(xué)生自主選擇底數(shù),雖有得到片面認(rèn)識(shí)的可能,但通過討論交流,學(xué)生能相互驗(yàn)證結(jié)論,仍能得到正確認(rèn)識(shí).并且學(xué)生能在過程中體會(huì)數(shù)據(jù)如何選擇,了解研究方法.
由于描點(diǎn)作圖時(shí)列舉點(diǎn)的個(gè)數(shù)的限制,學(xué)生對(duì)x→∞時(shí)函數(shù)圖象特征缺乏直觀感受.而且由于所舉例子個(gè)數(shù)的限制,學(xué)生對(duì)于歸納的結(jié)論缺乏一般性的認(rèn)識(shí).教師應(yīng)利用繪圖軟件作出底數(shù)連續(xù)變化的圖象 ,驗(yàn)證猜想.
數(shù)形結(jié)合、從特殊到一般的思維方法是概括歸納抽象對(duì)象的一般思維方法,本節(jié)課的重點(diǎn)是通過對(duì)指數(shù)函數(shù)圖象性質(zhì)的研究,總結(jié)研究函數(shù)的一般方法,應(yīng)充分發(fā)動(dòng)學(xué)生參與研究的每個(gè)過程,得到直接體驗(yàn).
[師生活動(dòng)]學(xué)生選取不同的a的值,作出圖象,觀察它們之間的異同,總結(jié)指數(shù)函數(shù)的圖象特征與函數(shù)性質(zhì).
[教學(xué)預(yù)設(shè)]學(xué)生通過觀察圖象,發(fā)現(xiàn)指數(shù)函數(shù)y=ax(a>0且a≠1)的性質(zhì).教師用實(shí)物投影儀展示學(xué)生所畫圖象,學(xué)生根據(jù)具體函數(shù)圖象說明具體函數(shù)性質(zhì).在學(xué)生說明過程中,教師引導(dǎo)學(xué)生對(duì)結(jié)論進(jìn)行適當(dāng)?shù)恼f明,進(jìn)而引導(dǎo)學(xué)生歸納一般指數(shù)函數(shù)的性質(zhì).教師引導(dǎo)學(xué)生關(guān)注列表描點(diǎn)作圖的過程,引導(dǎo)學(xué)生通過反思過程,并通過動(dòng)態(tài)圖象驗(yàn)證猜想,促進(jìn)學(xué)生體會(huì)數(shù)形結(jié)合的分析方法.教師尊重生成,但需引導(dǎo)學(xué)生區(qū)別指數(shù)函數(shù)本身的性質(zhì)與指數(shù)函數(shù)之間的性質(zhì).其中⑥⑦不強(qiáng)加于學(xué)生.對(duì)于⑥,要引導(dǎo)學(xué)生在同一坐標(biāo)系中畫出圖象,啟發(fā)學(xué)生觀察底數(shù)互為倒數(shù)的指數(shù)函數(shù)的圖象,先得到具體的例子.對(duì)于⑦,在例1第3小題中,會(huì)有學(xué)生提出利用不同底數(shù)指數(shù)函數(shù)圖象解決,可順勢(shì)利導(dǎo),也可布置為課后作業(yè),繼續(xù)研究.
生:自主選擇數(shù)據(jù),在坐標(biāo)紙上列表作圖,列出函數(shù)性質(zhì).
師:(巡視,必要時(shí)參與討論,及時(shí)提示任務(wù),待大部分學(xué)生有結(jié)論后,鼓勵(lì)學(xué)生交流,請(qǐng)學(xué)生匯報(bào).)有條理地整理一下結(jié)論,討論交流所得.(同時(shí)用實(shí)物投影儀展示學(xué)生所畫圖象.若沒有投影儀,用幾何畫板作出圖象.)
生:(可能出現(xiàn)的情況)(1)在兩個(gè)坐標(biāo)系中畫圖;(2)所取底數(shù)均大于1;(3)兩個(gè)底數(shù)大于1,一個(gè)底數(shù)小于1;(4)關(guān)于y軸對(duì)稱的兩個(gè)指數(shù)函數(shù).
師:(過程性引導(dǎo))底數(shù)你是怎么取的?你是怎樣觀察出結(jié)論的?在列表過程中,你有什么發(fā)現(xiàn)嗎?為什么要在兩個(gè)坐標(biāo)系中畫圖?為什么不也取兩個(gè)底數(shù)小于1?
師:(用彩筆描粗圖象,故意出錯(cuò))錯(cuò)在哪里?為什么?
生:指數(shù)函數(shù)是單調(diào)遞增的,過定點(diǎn)(0, 1).
師:(引導(dǎo)學(xué)生規(guī)范表述,并板書)指數(shù)函數(shù)在(-∞, +∞)上單調(diào)遞增,圖象過定點(diǎn)(0, 1).
師:指數(shù)函數(shù)還有其它性質(zhì)嗎?
師:也就是說值域?yàn)?0, +∞).
生:指數(shù)函數(shù)是非奇非偶函數(shù).
師:有不同意見嗎?
生:當(dāng)0
(其它預(yù)設(shè):
(1)當(dāng)a>1時(shí),若x>0,則y>1;若x<0,則y<1.
當(dāng)00,則y<1;若x<0 y="">1.
(2)學(xué)生畫出y=2x和y=3x圖象,得出函數(shù)遞增速度的差異.
(3)畫出y=2x和y=0.5x圖象,得到底數(shù)互為倒數(shù)的指數(shù)函數(shù)圖象關(guān)于y軸對(duì)稱.)
師:(板書學(xué)生交流結(jié)果,整理成表格.注意區(qū)分“函數(shù)性質(zhì)”與“函數(shù)之間的關(guān)系”.若有學(xué)生試圖說明結(jié)論的合理性,可提供機(jī)會(huì).)大家認(rèn)為底數(shù)a>1或0
[階段小結(jié)] 指數(shù)函數(shù)y=ax(a>0且a≠1)具有以下性質(zhì):
、俣x域?yàn)镽.
、谥涤?yàn)?0, +∞).
、蹐D象過定點(diǎn)(0, 1).
、芊瞧娣桥己瘮(shù).
⑤當(dāng)a>1時(shí),函數(shù)y=ax在(-∞, +∞)上單調(diào)遞增;
當(dāng)0
、藓瘮(shù)y=ax與y=()x (a>0且a≠1)圖象關(guān)于y軸對(duì)稱.
⑦指數(shù)函數(shù)y=ax與y=bx(a>b)的圖象有如下關(guān)系:
x∈(-∞, 0)時(shí),y=ax圖象在y=bx圖象下方;
x=0時(shí),兩圖象相交;
x∈(0,+∞)時(shí),y=ax圖象在y=bx圖象上方.
[意圖分析]通過探究活動(dòng),使學(xué)生獲得對(duì)指數(shù)函數(shù)圖象的直觀認(rèn)識(shí).學(xué)生觀察圖象,是對(duì)圖形語(yǔ)言的理解;根據(jù)圖象描述性質(zhì),是將圖形語(yǔ)言轉(zhuǎn)化為符號(hào)或文字語(yǔ)言.對(duì)函數(shù)的理解,是建立在三種語(yǔ)言相互轉(zhuǎn)化的基礎(chǔ)上的.在交流匯報(bào)過程中,一方面要通過對(duì)探究較深入學(xué)生的具體研究過程的剖析,總結(jié)提升學(xué)習(xí)方法,優(yōu)化學(xué)習(xí)策略;另一方面要關(guān)注部分探究意識(shí)與能力都薄弱的學(xué)生的表現(xiàn),鼓勵(lì)他們大膽發(fā)言,激勵(lì)他們主動(dòng)參與活動(dòng),讓全體學(xué)生成為真正的學(xué)習(xí)主體.自主探究活動(dòng)能充分激發(fā)學(xué)生的相互學(xué)習(xí)能力,能有效幫助學(xué)生突破難點(diǎn).
3.新知運(yùn)用鞏固深化
(方案一)(分析函數(shù)性質(zhì)的用途)
師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?
師:函數(shù)的定義域是函數(shù)的基礎(chǔ),是運(yùn)用性質(zhì)的前提.值域是研究函數(shù)最值的前提.具備奇偶性的函數(shù),可以利用對(duì)稱性簡(jiǎn)化研究.指數(shù)函數(shù)過定點(diǎn)(0, 1),說明可以將常數(shù)1轉(zhuǎn)化為指數(shù)式,即1=20=30=…那么函數(shù)單調(diào)性有什么用呢?
生:可以求最值,可以比較兩個(gè)函數(shù)值的大小.
師:那你能舉出運(yùn)用指數(shù)函數(shù)單調(diào)性比大小的例子嗎?(提示:既然是運(yùn)用指數(shù)函數(shù)單調(diào)性,那應(yīng)該有指數(shù)式.)
生:(舉例并判斷大小.)
師:你考察了哪個(gè)指數(shù)函數(shù)?怎么想到的?(規(guī)范表述)
師:以往我們計(jì)算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計(jì)算就可以比較兩個(gè)冪的大小.(出示例1)
(方案二)
師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?
師:(口述并板書)你能比較32與33的大小嗎?
生:直接計(jì)算比較.
師:那比較30.2與30.3的大小呢?能不能不計(jì)算呢?
生:利用函數(shù)y=3x的單調(diào)性.
師:能具體說明嗎?(引導(dǎo)學(xué)生規(guī)范表達(dá))我們?cè)僭囈辉?
(出示例1)
【例1】比較下列各組數(shù)中兩個(gè)值的大。
①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.
[設(shè)計(jì)意圖] 引導(dǎo)學(xué)生運(yùn)用指數(shù)函數(shù)性質(zhì).對(duì)于 32與33的大小比較,學(xué)生更可能計(jì)算出冪的值直接比較.變式后,學(xué)生可能作差或作商比較,轉(zhuǎn)化為比較30.1與1的大小,進(jìn)而運(yùn)用指數(shù)函數(shù)單調(diào)性,也可能直接運(yùn)用單調(diào)性.初步運(yùn)用新知解決問題,注重題意理解,擴(kuò)大知識(shí)遷移,感悟解題方法,達(dá)到對(duì)新知鞏固記憶,加深理解.
[師生活動(dòng)]學(xué)生板演,教師組織學(xué)生點(diǎn)評(píng).
[教學(xué)預(yù)設(shè)] ①②兩題,學(xué)生能運(yùn)用指數(shù)函數(shù)單調(diào)性解決.②題學(xué)生可能得到錯(cuò)誤答案,教師可組織相互點(diǎn)評(píng),規(guī)范表達(dá),正確運(yùn)用性質(zhì).③學(xué)生可能運(yùn)用不同方法,應(yīng)給予充分的時(shí)間,并在具體問題解決后引導(dǎo)學(xué)生總結(jié)一般方法.
師:(引導(dǎo)學(xué)生規(guī)范表達(dá))你考察了哪個(gè)指數(shù)函數(shù)?根據(jù)函數(shù)的什么性質(zhì)?
師:(對(duì)③的引導(dǎo))你考慮利用哪個(gè)函數(shù)?是y=1.5x還是y=0.8x?這兩個(gè)函數(shù)有什么關(guān)聯(lián)?(引導(dǎo)學(xué)生畫出圖象,從形上提示:圖象有什么關(guān)聯(lián)?)
生:它們都過點(diǎn)(0, 1).
師:也就是說,可以將1轉(zhuǎn)化為指數(shù)形式,即1=1.50=0.80.那接下來呢?
生:比較1.50.3,0.81.2和1的大小.
師:我們找到了一個(gè)比大小的中間量.以往我們計(jì)算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計(jì)算就可以比較兩個(gè)冪的大小.
【例2】
①已知3x≥30.5,求實(shí)數(shù)x的取值范圍;
、谝阎0.2x<25,求實(shí)數(shù)x的取值范圍.
[設(shè)計(jì)意圖]指數(shù)函數(shù)單調(diào)性的逆用,同時(shí)考查指數(shù)函數(shù)的定義域.
4.概括知識(shí)總結(jié)方法
〖問題4本節(jié)課我們學(xué)習(xí)了哪些知識(shí)?你還學(xué)會(huì)了哪些方法?
[設(shè)計(jì)意圖] 回顧所學(xué)內(nèi)容,深化認(rèn)知.開放式小結(jié),不同學(xué)生有不同的收獲.
[師生活動(dòng)]學(xué)生發(fā)言總結(jié),交流所得.
[教學(xué)預(yù)設(shè)]
通過本節(jié)課對(duì)指數(shù)函數(shù)圖象和性質(zhì)的研究,我們獲得了以下知識(shí)和方法:
、僦笖(shù)函數(shù)的定義與性質(zhì);
、谘芯亢瘮(shù)的一般方法和步驟.
師:本節(jié)課我們學(xué)習(xí)了什么知識(shí)?
生:指數(shù)函數(shù)的定義和性質(zhì).
師:回顧我們的研究過程,我們是怎樣研究指數(shù)函數(shù)的?
生:先確定研究的內(nèi)容:定義域、值域、單調(diào)性、奇偶性和其它性質(zhì).
生:然后從幾個(gè)具體的指數(shù)函數(shù)開始,畫出圖象,列出性質(zhì),最后得到一般情況.
師:這是一種從特殊到一般的研究方法.研究指數(shù)函數(shù)的方法,也是研究函數(shù)的一般方法,今后我們還會(huì)運(yùn)用這樣的方法研究新的函數(shù).
[意圖分析]課堂總結(jié)不是對(duì)所學(xué)知識(shí)的簡(jiǎn)單回顧,應(yīng)讓學(xué)生在知識(shí)、方法和策略上多層次地整理,促進(jìn)學(xué)生理解所用學(xué)習(xí)方法的合理性與普遍性,使學(xué)生獲得知識(shí)與能力的共同進(jìn)步.
5.分層作業(yè),因材施教
(1)感受理解:課本第54頁(yè),習(xí)題2.2(2):1,2,3,4;
(2)思考運(yùn)用:運(yùn)用今天的研究方法,你還能得到指數(shù)函數(shù)的其它性質(zhì)嗎?
[設(shè)計(jì)意圖]分層布置作業(yè),“感受理解”面向全體學(xué)生,旨在掌握指數(shù)函數(shù)的圖象與性質(zhì).“思考運(yùn)用”提供學(xué)生運(yùn)用函數(shù)研究的一般方法自主研究的機(jī)會(huì).
、觯毯蠓此蓟仡
一、對(duì)于指數(shù)函數(shù)概念的認(rèn)識(shí)
指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置.底數(shù)取值范圍有規(guī)定,使得這一模型形式簡(jiǎn)單又不失本質(zhì).不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點(diǎn)放在概念的合理性的理解以及體會(huì)模型思想.
二、對(duì)于培養(yǎng)學(xué)生思維習(xí)慣的考慮
在學(xué)生自主探索的過程中,教師應(yīng)注意培養(yǎng)學(xué)生良好的思維習(xí)慣.實(shí)際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對(duì)指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進(jìn)行觀察和歸納的良好的思維習(xí)慣.對(duì)所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學(xué)生已有的知識(shí)水平或教學(xué)要求進(jìn)行證明或合理的說明.學(xué)生不僅學(xué)到了數(shù)學(xué)知識(shí),也初步體驗(yàn)了研究問題的基本方法.
三、關(guān)于設(shè)計(jì)定位的反思
本節(jié)課的教學(xué)設(shè)計(jì),力圖體現(xiàn)因材施教原則。不同的學(xué)情下,教師應(yīng)采用不同的教學(xué)策略.如果學(xué)生基礎(chǔ)相對(duì)薄弱,問題的提出可以分層次進(jìn)行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學(xué)生暴露思維過程.、
高一數(shù)學(xué)教學(xué)計(jì)劃14
本節(jié)課的教學(xué)內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡(jiǎn)單應(yīng)用。教學(xué)重點(diǎn)是指數(shù)函數(shù)的圖像與性質(zhì)。
I這是指數(shù)函數(shù)在本章的位置。
指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì)后,學(xué)習(xí)的第一個(gè)新的初等函數(shù)。它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實(shí)踐。指數(shù)函數(shù)的學(xué)習(xí),一方面可以進(jìn)一步深化對(duì)函數(shù)概念的理解,另一方面也為研究對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ)。因此,本節(jié)課的學(xué)習(xí)起著承上啟下的作用,也是學(xué)生體驗(yàn)數(shù)學(xué)思想與方法應(yīng)用的過程。
指數(shù)函數(shù)模型在貸款利率的計(jì)算以及考古中年代的測(cè)算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,因此,學(xué)習(xí)這部分知識(shí)還有著一定的現(xiàn)實(shí)意義。
Ⅱ.教學(xué)目標(biāo)設(shè)置
1。學(xué)生能從具體實(shí)例中概括指數(shù)函數(shù)典型特征,并用數(shù)學(xué)符號(hào)表示,建構(gòu)指數(shù)函數(shù)的概念。
2。學(xué)生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個(gè)冪的大小。
3。學(xué)生運(yùn)用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗(yàn)研究函數(shù)的一般方法。
4。在探究活動(dòng)中,學(xué)生通過獨(dú)立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習(xí)慣,提升自主學(xué)習(xí)能力。
Ⅲ.學(xué)生學(xué)情分析
授課班級(jí)學(xué)生為南京師大附中實(shí)驗(yàn)班學(xué)生。
1。學(xué)生已有認(rèn)知基礎(chǔ)
學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),對(duì)函數(shù)有了初步的認(rèn)識(shí)。學(xué)生已經(jīng)完成了指數(shù)取值范圍的擴(kuò)充,具備了進(jìn)行指數(shù)運(yùn)算的能力。學(xué)生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗(yàn)。學(xué)生數(shù)學(xué)基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨(dú)立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣。
2。達(dá)成目標(biāo)所需要的認(rèn)知基礎(chǔ)
學(xué)生需要對(duì)研究的目標(biāo)、方法和途徑有初步的認(rèn)識(shí),需要具備較好的歸納、猜想和推理能力。
3。難點(diǎn)及突破策略
難點(diǎn):1。 對(duì)研究函數(shù)的一般方法的認(rèn)識(shí)。
2。 自主選擇底數(shù)不當(dāng)導(dǎo)致歸納所得結(jié)論片面。
突破策略:
1。教師引導(dǎo)學(xué)生先明確研究的內(nèi)容與方法,從總體上認(rèn)識(shí)研究的目標(biāo)與手段。
2。組織匯報(bào)交流活動(dòng),展現(xiàn)思維過程,相互評(píng)價(jià),相互啟發(fā),促進(jìn)反思。
3。對(duì)猜想進(jìn)行適當(dāng)?shù)刈C明或說明,合情推理與演繹推理相結(jié)合。
、簦虒W(xué)策略設(shè)計(jì)
根據(jù)學(xué)生已有學(xué)習(xí)基礎(chǔ),為提升學(xué)生的學(xué)習(xí)能力,本節(jié)課的教學(xué),采用自主學(xué)習(xí)方式。通過教師引領(lǐng)學(xué)生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認(rèn)識(shí)研究的目標(biāo)與策略,在研究的過程中逐漸完善研究的方法與手段。
學(xué)生的自主學(xué)習(xí),具體落實(shí)在三個(gè)環(huán)節(jié):
(1)建構(gòu)指數(shù)函數(shù)概念時(shí),學(xué)生自主舉例,歸納特征,并用符號(hào)表示,討論底數(shù)的取值范圍,完善概念。
(2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時(shí),學(xué)生自選底數(shù),開展自主研究,并通過匯報(bào)交流相互提升。
(3)性質(zhì)應(yīng)用階段,學(xué)生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用。
研究函數(shù)的性質(zhì),可以從形和數(shù)兩個(gè)方面展開。從圖形直觀和數(shù)量關(guān)系兩個(gè)方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進(jìn)而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時(shí)應(yīng)用函數(shù)解析式輔以必要的說明和證明。
、酰虒W(xué)過程設(shè)計(jì)
1。創(chuàng)設(shè)情境建構(gòu)概念
師:我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個(gè)變量之間的關(guān)系。你能用函數(shù)的觀點(diǎn)分析下面的例子嗎?
師:大家知道細(xì)胞分裂的規(guī)律嗎?(出示情境問題)
[情境問題1]某細(xì)胞分裂時(shí),由一個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),4個(gè)分裂成8個(gè),……如果細(xì)胞分裂x次,相應(yīng)的細(xì)胞個(gè)數(shù)為y,如何描述這兩個(gè)變量的關(guān)系?
[情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的.84%。如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個(gè)變量的關(guān)系?
[師生活動(dòng)]引導(dǎo)學(xué)生分析,找到兩個(gè)變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0。84x。
師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點(diǎn)?你能再舉幾個(gè)例子嗎?
〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點(diǎn)?能否寫成一般形式?
[設(shè)計(jì)意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實(shí)際生活的聯(lián)系。引導(dǎo)學(xué)生從具體實(shí)例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學(xué)符號(hào)表示。初步得到y(tǒng)=ax這個(gè)形式后,引導(dǎo)學(xué)生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu)。指數(shù)范圍擴(kuò)充到實(shí)數(shù)后,關(guān)注x∈R時(shí),y=ax是否始終有意義,因此規(guī)定a>0。a≠1并不是必須的,常函數(shù)在高等數(shù)學(xué)里是基本函數(shù),也有重要的意義。為了使指數(shù)函數(shù)與對(duì)數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1。此處不需對(duì)此解釋,只要補(bǔ)充說“1的任何次方總是1,所以通常還規(guī)定a≠1”。
[師生活動(dòng)]學(xué)生舉例,教師引導(dǎo)學(xué)生觀察,其共同特點(diǎn)是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax。
[教學(xué)預(yù)設(shè)]學(xué)生能舉出具體的例子——y=3x,y=0。5x…。如出現(xiàn)y=(-2)x最好,更便于引發(fā)對(duì)a的討論,但一般不會(huì)出現(xiàn)。進(jìn)而提出這類函數(shù)一般形式y(tǒng)=ax。
、觯毯蠓此蓟仡
一、對(duì)于指數(shù)函數(shù)概念的認(rèn)識(shí)
指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置。底數(shù)取值范圍有規(guī)定,使得這一模型形式簡(jiǎn)單又不失本質(zhì)。不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點(diǎn)放在概念的合理性的理解以及體會(huì)模型思想。
二、對(duì)于培養(yǎng)學(xué)生思維習(xí)慣的考慮
在學(xué)生自主探索的過程中,教師應(yīng)注意培養(yǎng)學(xué)生良好的思維習(xí)慣。實(shí)際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對(duì)指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進(jìn)行觀察和歸納的良好的思維習(xí)慣。對(duì)所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學(xué)生已有的知識(shí)水平或教學(xué)要求進(jìn)行證明或合理的說明。學(xué)生不僅學(xué)到了數(shù)學(xué)知識(shí),也初步體驗(yàn)了研究問題的基本方法。
三、關(guān)于設(shè)計(jì)定位的反思
本節(jié)課的教學(xué)設(shè)計(jì),力圖體現(xiàn)因材施教原則。不同的學(xué)情下,教師應(yīng)采用不同的教學(xué)策略。如果學(xué)生基礎(chǔ)相對(duì)薄弱,問題的提出可以分層次進(jìn)行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學(xué)生暴露思維過程。
高一數(shù)學(xué)教學(xué)計(jì)劃15
一、設(shè)計(jì)理念
新課標(biāo)指出:學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不應(yīng)只是接受、記憶、模仿、練習(xí),教師應(yīng)引導(dǎo)學(xué)生自主探究、合作學(xué)習(xí)、動(dòng)手操作、閱讀自學(xué),應(yīng)注重提升學(xué)生的數(shù)學(xué)思維能力,注重發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)。
二、教材分析
本節(jié)課選自人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教課書》必修1,第一章1.1.2集合間的基本關(guān)系。集合是數(shù)學(xué)的基本和重要語(yǔ)言之一,在數(shù)學(xué)以及其他的領(lǐng)域都有著廣泛的應(yīng)用,用集合及對(duì)應(yīng)的語(yǔ)言來描述函數(shù),是高中階段的一個(gè)難點(diǎn)也是重點(diǎn),因此集合語(yǔ)言作為一種研究工具,它的學(xué)習(xí)非常重要。本節(jié)內(nèi)容主要是集合間基本關(guān)系的學(xué)習(xí),重在讓學(xué)生類比實(shí)數(shù)間的關(guān)系,來進(jìn)行探究,同時(shí)培養(yǎng)學(xué)生用數(shù)學(xué)符號(hào)語(yǔ)言,圖形語(yǔ)言進(jìn)行交流的能力,讓學(xué)生在直觀的基礎(chǔ)上,理解抽象的概念,同時(shí)它也是后續(xù)學(xué)習(xí)集合運(yùn)算的知識(shí)儲(chǔ)備,因此有著至關(guān)重要的作用。
三、學(xué)情分析
【年齡特點(diǎn)】:
假設(shè)本次的授課對(duì)象是普通高中高一學(xué)生,高一的學(xué)生求知欲強(qiáng),精力旺盛,思維活躍,已經(jīng)具備了一定的觀察、分析、歸納能力,能夠很好的配合教師開展教學(xué)活動(dòng)。
【認(rèn)知優(yōu)點(diǎn)】
一方面學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,初步掌握了集合的三種表示法,對(duì)于本節(jié)課的學(xué)習(xí)有利一定的認(rèn)知基礎(chǔ)。
【學(xué)習(xí)難點(diǎn)】
但是,本節(jié)課這種類比實(shí)數(shù)關(guān)系研究集合間的關(guān)系,這種類比學(xué)習(xí)對(duì)于學(xué)生來說還有一定的難度。
四、教學(xué)目標(biāo)
? 知識(shí)與技能:
1. 理解子集、V圖、真子集、空集的概念。
2. 掌握用數(shù)學(xué)符號(hào)語(yǔ)言以及V圖語(yǔ)言表示集合間的基本關(guān)系。
3. 能夠區(qū)分集合間的.包含關(guān)系與元素與集合的屬于關(guān)系。
? 過程與方法:
1. 通過類比實(shí)數(shù)間的關(guān)系,研究集合間的關(guān)系,培養(yǎng)學(xué)生類比、觀察、
分析、歸納的能力。
2. 培養(yǎng)學(xué)生用數(shù)學(xué)符號(hào)語(yǔ)言、圖形語(yǔ)言進(jìn)行交流的能力。
? 情感態(tài)度與價(jià)值觀:
1.激發(fā)學(xué)生學(xué)習(xí)的興趣,圖形、符號(hào)所帶來的魅力。
2.感悟數(shù)學(xué)知識(shí)間的聯(lián)系,養(yǎng)成良好的思維習(xí)慣及數(shù)學(xué)品質(zhì)。
五、教學(xué)重、難點(diǎn)
重點(diǎn):
集合間基本關(guān)系。
難點(diǎn):
類比實(shí)數(shù)間的關(guān)系研究集合間的關(guān)系。
六、教學(xué)手段
PPT輔助教學(xué)
七、教法、學(xué)法
? 教法:
探究式教學(xué)、講練式教學(xué)
遵循“教師主導(dǎo)作用與學(xué)生主體地位相結(jié)合的”教學(xué)規(guī)律,引導(dǎo)學(xué)生自主探究,合作學(xué)習(xí),在教學(xué)中引導(dǎo)學(xué)生類比實(shí)數(shù)間關(guān)系,來研究集合間的關(guān)系,降低了學(xué)生學(xué)習(xí)的難度,同時(shí)也激發(fā)了學(xué)生學(xué)習(xí)的興趣,充分體現(xiàn)了以學(xué)生為本的教學(xué)思想。
? 學(xué)法:
自主探究、類比學(xué)習(xí)、合作交流
教師的“教”其本質(zhì)是為了“不教”,教師除了讓學(xué)生獲得知識(shí),提高解題能力,還應(yīng)該讓學(xué)生學(xué)會(huì)學(xué)習(xí),樂于學(xué)習(xí),充分體現(xiàn)“以學(xué)定教”的教學(xué)理念。通過引導(dǎo)學(xué)生類比學(xué)習(xí),同學(xué)間的合作交流,讓學(xué)生更好的學(xué)習(xí)集合的知識(shí)。
八、課型、課時(shí)
課型:新授課
課時(shí):一課時(shí)
九、教學(xué)過程
(一)教學(xué)流程圖
(二)教學(xué)詳細(xì)過程
1..回顧就知,引出新知
問題一:實(shí)數(shù)間有相等、不等的關(guān)系,例如5=5,3﹤7,那么集合之間會(huì)有什么關(guān)系呢?
2.合作交流,探究新知
問題二:大家來仔細(xì)觀察下面幾個(gè)例子,你能發(fā)現(xiàn)集合間的關(guān)系嗎?
(1)A={1,2,3},B={1,2,3,4,5};
(2)設(shè)A為新華中學(xué)高一(2)班女生的全體組成集合;B為這個(gè)班學(xué)生的全體組成集合;
(3)設(shè)C={x∣x是兩條邊相等的三角形},D={x∣x是等腰三角形}
【師生活動(dòng)】:學(xué)生觀察例子后,得出結(jié)論,在(1)中集合A中的任何一個(gè)元素都是集合B中的元素,教師總結(jié),這時(shí)我們說集合A與集合B 有包含關(guān)系。(2)中的集合也是這種關(guān)一般地,對(duì)于兩個(gè)集合A,B,如果集合A中任意一個(gè)元素都是集合B中的元素,我們就說這兩集合有包含關(guān)系,稱集合A為集合B 的子集,記作:A?B(B?A),讀作A含于B或者B包含A.
在數(shù)學(xué)中我們經(jīng)常用平面上封閉的曲線內(nèi)部代表集合,這樣上述集合A與集合B的包含關(guān)系,可以用下圖來表示:
問題三:你能舉出幾個(gè)集合,并說出它們之間的包含關(guān)系嗎?
【師生活動(dòng)】:學(xué)生自己舉出些例子,并加以說明,教師對(duì)學(xué)生的回答進(jìn)行補(bǔ)充。
問題四:對(duì)于題目中的第3小題中的集合,你有什么發(fā)現(xiàn)嗎?
【師生活動(dòng)1】:在(3)由于兩邊相等的三角形是等腰三角形,因此集合C,D都是所有等腰三角形的集合,集合C中任意一個(gè)元素都是集合D的元素 ,同時(shí)集合D任意一個(gè)元素都是集合C的元素,因此集合C與集合D相等,記作:C=D。
用集合的概念對(duì)相等做進(jìn)一步的描述:
如果集合A是集合B 子集,且集合B是集合A的子集,此時(shí)集合A與集合B的元素一樣,因此集合A與集合B 相等,記作A=B。
強(qiáng)調(diào):如果集合A?B,但存在元素x∈B, 且x?A,我們稱集合A是集合B的真子集,記作:A?B
【師生活動(dòng)2】:教師引導(dǎo)學(xué)生以(1)為例,指出A?B,但4∈B, 4?A,教師總結(jié)所以集合A是集合B的真子集。
【師生活動(dòng)】?,并規(guī)定空集是任何集合的
4.思維拓展,討論新知
問題六:包含關(guān)系{a}?A與屬于關(guān)系a∈A有什么區(qū)別?請(qǐng)大家用具體例子來說明
【師生活動(dòng)1】:學(xué)生以(1)為例{1,2}?A,2∈A,說明前者是集合之間的關(guān)系,后者是
問題七:經(jīng)過以上集合之間關(guān)系的學(xué)習(xí),你有什么結(jié)論?
【師生活動(dòng)】:師生討論得出結(jié)論:
(1)任何一個(gè)集合都是它本身的子集,即A?A
5.練習(xí)反饋,培養(yǎng)能力
例1寫出集合{a,b}的所有子集,并指出哪些是真子集
例2用適當(dāng)?shù)姆?hào)填空
(1)a_{a,b,c}
(2){0,1}_N
(3){2,1}_{X∣X2-3X+2=0}
6.課堂小結(jié),布置作業(yè)
這節(jié)課你學(xué)到了哪些知識(shí)?
小結(jié) 知識(shí)上:
能力上:
情感上:
作業(yè):必做題:P8,3
思考題:實(shí)數(shù)間有運(yùn)算,那集合呢?
十、板書設(shè)計(jì)
十一、教學(xué)反思
【高一數(shù)學(xué)教學(xué)計(jì)劃】相關(guān)文章:
高一數(shù)學(xué)教學(xué)計(jì)劃06-20
【熱門】高一數(shù)學(xué)教學(xué)計(jì)劃03-17
【熱】高一數(shù)學(xué)教學(xué)計(jì)劃03-19
高一數(shù)學(xué)教學(xué)計(jì)劃【熱門】03-17
【薦】高一數(shù)學(xué)教學(xué)計(jì)劃03-05
高一數(shù)學(xué)教學(xué)計(jì)劃【推薦】03-05
【精】高一數(shù)學(xué)教學(xué)計(jì)劃03-07