- 高二數(shù)學(xué)教案 推薦度:
- 相關(guān)推薦
高二數(shù)學(xué)優(yōu)秀教案
作為一名人民教師,常常要寫一份優(yōu)秀的教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。如何把教案做到重點突出呢?以下是小編精心整理的高二數(shù)學(xué)優(yōu)秀教案,希望對大家有所幫助。
高二數(shù)學(xué)優(yōu)秀教案1
一、教學(xué)目標
1、知識與技能
(1)理解流程圖的順序結(jié)構(gòu)和選擇結(jié)構(gòu)。
(2)能用文字語言表示算法,并能將算法用順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡單的流程圖
2、過程與方法
學(xué)生通過模仿、操作、探索、經(jīng)歷設(shè)計流程圖表達解決問題的過程,理解流程圖的結(jié)構(gòu)。
3情感、態(tài)度與價值觀
學(xué)生通過動手作圖。用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想程序化思想,在歸納概括中培養(yǎng)學(xué)生的邏輯思維能力。
二、教學(xué)重點、難點
重點:算法的順序結(jié)構(gòu)與選擇結(jié)構(gòu)。
難點:用含有選擇結(jié)構(gòu)的`流程圖表示算法。
三、學(xué)法與教學(xué)用具
學(xué)法:學(xué)生通過動手作圖。用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經(jīng)歷設(shè)計流程圖表達解決問題的過程。進而學(xué)習(xí)順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡單的流程圖。
教學(xué)用具:尺規(guī)作圖工具,多媒體。
四、教學(xué)思路
。ㄒ唬栴}引入揭示課題
例1尺規(guī)作圖,確定線段的一個5等分點。
要求:同桌一人作圖,一人寫算法,并請學(xué)生說出答案。
提問:用文字語言寫出算法有何感受?
引導(dǎo)學(xué)生體驗到:顯得冗長,不方便、不簡潔。
教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學(xué)習(xí)用一些通用圖型符號構(gòu)成一張圖即流程圖表示算法。
本節(jié)要學(xué)習(xí)的是順序結(jié)構(gòu)與選擇結(jié)構(gòu)。
右圖即是同流程圖表示的算法。
(二)、觀察類比理解課題
1、投影介紹流程圖的符號、名稱及功能說明。
符號符號名稱功能說明終端框算法開始與結(jié)束處理框算法的各種處理操作判斷框算法的各種轉(zhuǎn)移
輸入輸出框輸入輸出操作指向線指向另一操作
2、講授順序結(jié)構(gòu)及選擇結(jié)構(gòu)的概念及流程圖
(1)順序結(jié)構(gòu)
依照步驟依次執(zhí)行的一個算法
流程圖:
。2)選擇結(jié)構(gòu)
對條件進行判斷來決定后面的步驟的結(jié)構(gòu)
流程圖:
3、用自然語言表示算法與用流程圖表示算法的比較
(1)半徑為r的圓的面積公式當r=10時寫出計算圓的面積的算法,并畫出流程圖。
解:
算法(自然語言)
①把10賦與r
②用公式求s
、圯敵鰏
流程圖
。2)已知函數(shù)對于每輸入一個X值都得到相應(yīng)的函數(shù)值,寫出算法并畫流程圖。
算法:(語言表示)
①輸入X值
②判斷X的范圍,若,用函數(shù)Y=x+1求函數(shù)值;否則用Y=2-x求函數(shù)值
③輸出Y的值
流程圖
小結(jié):含有數(shù)學(xué)中需要分類討論的或與分段函數(shù)有關(guān)的問題,均要用到選擇結(jié)構(gòu)。
學(xué)生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)
(三)模仿操作經(jīng)歷課題
1、用流程圖表示確定線段A.B的一個16等分點
2、分析講解例2;
分析:
思考:有多少個選擇結(jié)構(gòu)?相應(yīng)的流程圖應(yīng)如何表示?
流程圖:
。ㄋ模w納小結(jié)鞏固課題
1、順序結(jié)構(gòu)和選擇結(jié)構(gòu)的模式是怎樣的?
2、怎樣用流程圖表示算法。
(五)練習(xí)P99 2
。┳鳂I(yè)P99 1
高二數(shù)學(xué)優(yōu)秀教案2
教學(xué)目的:
1、掌握常用基本不等式,并能用之證明不等式和求最值;
2、掌握含絕對值的不等式的性質(zhì);
3、會解簡單的高次不等式、分式不等式、含絕對值的不等式、簡單的無理不等式、指數(shù)不等式和對數(shù)不等式。學(xué)會運用數(shù)形結(jié)合、分類討論、等價轉(zhuǎn)換的思想方法分析和解決有關(guān)
教學(xué)過程:
一、復(fù)習(xí)引入:本章知識點
二、講解范例:幾類常見的問題
(一)含參數(shù)的不等式的解法
例1解關(guān)于x的不等式。
例2解關(guān)于x的不等式。
例3解關(guān)于x的不等式。
例4解關(guān)于x的不等式
例5滿足的`x的集合為A;滿足的x
的集合為B 1若AB求a的取值范圍2若AB求a的取值范圍3若AB為僅含一個元素的集合,求a的值。
。ǘ┖瘮(shù)的最值與值域
例6求函數(shù)的最大值,下列解法是否正確?為什么?
解一:,解二:當即時,例7若,求的最值。
例8已知x,y為正實數(shù),且成等差數(shù)列,成等比數(shù)列,求的取值范圍。
例9設(shè)且,求的最大值
例10函數(shù)的最大值為9,最小值為1,求a,b的值。
三、作業(yè):
1、
2、,若,求a的取值范圍
3、
4、
5、當a在什么范圍內(nèi)方程:有兩個不同的負根
6、若方程的兩根都對于2,求實數(shù)m的范圍
7、求下列函數(shù)的最值:
1
2
8.1時求的最小值,的最小值
2設(shè),求的最大值
3若,求的最大值
4若且,求的最小值
9、若,求證:的最小值為3
10、制作一個容積為的圓柱形容器(有底有蓋),問圓柱底半徑和
高各取多少時,用料最省?(不計加工時的損耗及接縫用料)
高二數(shù)學(xué)優(yōu)秀教案3
一、教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標:
認知目標:通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學(xué)生會運用正弦定理解決兩類基本的解三角形問題。
能力目標:引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的'創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標:面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。教學(xué)難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
二、教法
根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。
三、學(xué)法
指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。
四、教學(xué)過程
。ㄒ)創(chuàng)設(shè)情境(3分鐘)
“興趣是的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進入今天的學(xué)習(xí)課題,(二)猜想—推理—證明(15分鐘)
激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。提問:那結(jié)論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿足關(guān)系
注意:
1、強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。
2、鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。
3、提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
。ㄈ)總結(jié)--應(yīng)用(3分鐘)
1、正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
2、運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。
高二數(shù)學(xué)優(yōu)秀教案4
[核心必知]
1、預(yù)習(xí)教材,問題導(dǎo)入
根據(jù)以下提綱,預(yù)習(xí)教材P2~P5,回答下列問題。
。1)對于一般的二元一次方程組a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何寫出它的求解步驟?
提示:分五步完成:
第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③
第二步,解③,得x=b2c1-b1c2a1b2-a2b1.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④
第四步,解④,得y=a1c2-a2c1a1b2-a2b1.
第五步,得到方程組的解為x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.
(2)在數(shù)學(xué)中算法通常指什么?
提示:在數(shù)學(xué)中,算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟。
2、歸納總結(jié),核心必記
。1)算法的概念
12世紀的算法指的是用阿拉伯數(shù)字進行算術(shù)運算的過程續(xù)表
數(shù)學(xué)中的算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟
現(xiàn)代算法通?梢跃幊捎嬎銠C程序,讓計算機執(zhí)行并解決問題
。2)設(shè)計算法的目的
計算機解決任何問題都要依賴于算法。只有將解決問題的'過程分解為若干個明確的步驟,即算法,并用計算機能夠接受的“語言”準確地描述出來,計算機才能夠解決問題。
[問題思考]
。1)求解某一個問題的算法是否是的?
提示:不是。
。2)任何問題都可以設(shè)計算法解決嗎?
提示:不一定。
高二數(shù)學(xué)優(yōu)秀教案5
課題:命題
課時:001
課型:新授課
教學(xué)目標
。、知識與技能:理解命題的概念和命題的構(gòu)成,能判斷給定陳述句是否為命題,能判斷命題的真假;能把命題改寫成“若p,則q”的形式;
。病⑦^程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;
。、情感、態(tài)度與價值觀:通過學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點與難點
重點:命題的概念、命題的構(gòu)成
難點:分清命題的條件、結(jié)論和判斷命題的真假
教學(xué)過程
一、復(fù)習(xí)回顧
引入:初中已學(xué)過命題的知識,請同學(xué)們回顧:什么叫做命題?
二、新課教學(xué)
下列語句的表述形式有什么特點?你能判斷他們的真假嗎?
(1)若直線a∥b,則直線a與直線b沒有公共點.
。2)2+4=7.
。3)垂直于同一條直線的兩個平面平行.
。4)若x2=1,則x=1.
。5)兩個全等三角形的面積相等.
。6)3能被2整除.
討論、判斷:學(xué)生通過討論,總結(jié):所有句子的表述都是陳述句的形式,每句話都判斷什么事情。其中(1)(3)(5)的判斷為真,(2)(4)(6)的判斷為假。
教師的引導(dǎo)分析:所謂判斷,就是肯定一個事物是什么或不是什么,不能含混不清。
抽象、歸納:
1、命題定義:一般地,我們把用語言、符號或式子表達的,可以判斷真假的陳述句叫做命題.
命題的定義的要點:能判斷真假的陳述句.
在數(shù)學(xué)課中,只研究數(shù)學(xué)命題,請學(xué)生舉幾個數(shù)學(xué)命題的例子.教師再與學(xué)生共同從命題的定義,判斷學(xué)生所舉例子是否是命題,從“判斷”的角度來加深對命題這一概念的'理解.
例1:判斷下列語句是否為命題?
。1)空集是任何集合的子集.
(2)若整數(shù)a是素數(shù),則是a奇數(shù).
。3)指數(shù)函數(shù)是增函數(shù)嗎?
。4)若平面上兩條直線不相交,則這兩條直線平行.
。5)=-2.
。6)x>15.
讓學(xué)生思考、辨析、討論解決,且通過練習(xí),引導(dǎo)學(xué)生總結(jié):判斷一個語句是不是命題,關(guān)鍵看兩點:第一是“陳述句”,第二是“可以判斷真假”,這兩個條件缺一不可.疑問句、祈使句、感嘆句均不是命題.
解略。
引申:以前,同學(xué)們學(xué)習(xí)了很多定理、推論,這些定理、推論是否是命題?同學(xué)們可否舉出一些定理、推論的例子來看看?
通過對此問的思考,學(xué)生將清晰地認識到定理、推論都是命題.
過渡:同學(xué)們都知道,一個定理或推論都是由條件和結(jié)論兩部分構(gòu)成(結(jié)合學(xué)生所舉定理和推論的例子,讓學(xué)生分辨定理和推論條件和結(jié)論,明確所有的定理、推論都是由條件和結(jié)論兩部分構(gòu)成)。緊接著提出問題:命題是否也是由條件和結(jié)論兩部分構(gòu)成呢?
2、命題的構(gòu)成――條件和結(jié)論
定義:從構(gòu)成來看,所有的命題都具由條件和結(jié)論兩部分構(gòu)成.在數(shù)學(xué)中,命題常寫成“若p,則q”或者“如果p,那么q”這種形式,通常,我們把這種形式的命題中的p叫做命題的條件,q叫做命題結(jié)論.
例2:指出下列命題中的條件p和結(jié)論q,并判斷各命題的真假.
。ǎ保┤粽麛(shù)a能被2整除,則a是偶數(shù).
。ǎ玻┤羲倪呅惺橇庑危瑒t它的對角線互相垂直平分.
。ǎ常┤鬭>0,b>0,則a+b>0.
。ǎ矗┤鬭>0,b>0,則a+b<0.
。ǎ担┐怪庇谕粭l直線的兩個平面平行.
此題中的(1)(2)(3)(4),較容易,估計學(xué)生較容易找出命題中的條件p和結(jié)論q,并能判斷命題的真假。其中設(shè)置命題(3)與(4)的目的在于:通過這兩個例子的比較,學(xué)更深刻地理解命題的定義——能判斷真假的陳述句,不管判斷的結(jié)果是對的還是錯的。
此例中的命題(5),不是“若P,則q”的形式,估計學(xué)生會有困難,此時,教師引導(dǎo)學(xué)生一起分析:已知的事項為“條件”,由已知推出的事項為“結(jié)論”.
解略。
過渡:從例2中,我們可以看到命題的兩種情況,即有些命題的結(jié)論是正確的,而有些命題的結(jié)論是錯誤的,那么我們就有了對命題的一種分類:真命題和假命題.
3、命題的分類
真命題:如果由命題的條件P通過推理一定可以得出命題的結(jié)論q,那么這樣的命題叫做真命題.
假命題:如果由命題的條件P通過推理不一定可以得出命題的結(jié)論q,那么這樣的命題叫做假命題.
強調(diào):
(1)注意命題與假命題的區(qū)別.如:“作直線AB”.這本身不是命題.也更不是假命題.
。ǎ玻┟}是一個判斷,判斷的結(jié)果就有對錯之分.因此就要引入真命題、假命題的的概念,強調(diào)真假命題的大前提,首先是命題。
判斷一個數(shù)學(xué)命題的真假方法:
。ǎ保⿺(shù)學(xué)中判定一個命題是真命題,要經(jīng)過證明.
。ǎ玻┮袛嘁粋命題是假命題,只需舉一個反例即可.
例3:把下列命題寫成“若P,則q”的形式,并判斷是真命題還是假命題:
(1)面積相等的兩個三角形全等。
。2)負數(shù)的立方是負數(shù)。
。3)對頂角相等。
分析:要把一個命題寫成“若P,則q”的形式,關(guān)鍵是要分清命題的條件和結(jié)論,然后寫成“若條件,則結(jié)論”即“若P,則q”的形式.解略。
三、鞏固練習(xí):
P4第2,3。
四、作業(yè):
P8:習(xí)題1.1A組~第1題
五、教學(xué)反思
師生共同回憶本節(jié)的學(xué)習(xí)內(nèi)容.
1、什么叫命題?真命題?假命題?
2、命題是由哪兩部分構(gòu)成的?
3、怎樣將命題寫成“若P,則q”的形式.
4、如何判斷真假命題.
高二數(shù)學(xué)優(yōu)秀教案6
課題1.1.1命題及其關(guān)系(一)課型新授課
目標
1)知識方法目標
了解命題的概念,2)能力目標
會判斷一個命題的真假,并會將一個命題改寫成“若,則”的形式。
重點
難點
1)重點:命題的改寫
2)難點:命題概念的理解,命題的條件與結(jié)論區(qū)分
教法與學(xué)法
教法:
教學(xué)過程備注
1、課題引入
(創(chuàng)設(shè)情景)
閱讀下列語句,你能判斷它們的真假嗎?
(1)矩形的對角線相等;
(2)3;
(3)3嗎?
(4)8是24的約數(shù);
。5)兩條直線相交,有且只有一個交點;
(6)他是個高個子。
2、問題探究
1)難點突破
2)探究方式
3)探究步驟
4)高潮設(shè)計
1、命題的概念:
、倜}:可以判斷真假的陳述句叫做命題(proposition)。
上述6個語句中,(1)(2)(4)(5)(6)是命題。
②真命題:判斷為真的語句叫做真命題(true proposition);
假命題:判斷為假的'語句叫做假命題(false proposition)。
上述5個命題中,(2)是假命題,其它4個都是真命題。
、劾1:判斷下列語句中哪些是命題?是真命題還是假命題?
。1)空集是任何集合的子集;
。2)若整數(shù)是素數(shù),則是奇數(shù);
(3)2小于或等于2;
。4)對數(shù)函數(shù)是增函數(shù)嗎?
(5);
。6)平面內(nèi)不相交的兩條直線一定平行;
。7)明天下雨。
。▽W(xué)生自練個別回答教師點評)
④探究:學(xué)生自我舉出一些命題,并判斷它們的真假。
2、將一個命題改寫成“若,則”的形式:
、倮1中的(2)就是一個“若,則”的命題形式,我們把其中的叫做命題的'條件,叫做命題的結(jié)論。
、谠噷⒗1中的命題(6)改寫成“若,則”的形式。
、劾2:將下列命題改寫成“若,則”的形式。
。1)兩條直線相交有且只有一個交點;
。2)對頂角相等;
。3)全等的兩個三角形面積也相等。
。▽W(xué)生自練個別回答教師點評)
3、 小結(jié):命題概念的理解,會判斷一個命題的真假,并會將命題改寫“若,則”的形式。
引導(dǎo)學(xué)生歸納出命題的概念,強調(diào)判斷一個語句是不是命題的兩個關(guān)鍵點:是否符合“是陳述句”和“可以判斷真假”。
通過例子引導(dǎo)學(xué)生辨別命題,區(qū)分命題的條件和結(jié)論。改寫為“若,則”的形式,為后續(xù)的學(xué)習(xí)打好基礎(chǔ)。
3、練習(xí)提高1.練習(xí):教材P4 1、2、3
師生互動
4、作業(yè)設(shè)計
作業(yè):
1、教材P8第1題
2、作業(yè)本1-10
5、課后反思
高二數(shù)學(xué)優(yōu)秀教案7
教學(xué)目標:
1、理解平面直角坐標系的意義;掌握在平面直角坐標系中刻畫點的位置的方法。
2、掌握坐標法解決幾何問題的步驟;體會坐標系的作用。
教學(xué)重點:
體會直角坐標系的作用。
教學(xué)難點:
能夠建立適當?shù)闹苯亲鴺讼担鉀Q數(shù)學(xué)問題。
授課類型:
新授課
教學(xué)模式:
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué)。
教具:
多媒體、實物投影儀
教學(xué)過程:
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運行,并在按計劃完成科學(xué)考察任務(wù)后,安全、準確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的位置機器運動的軌跡。
情境2:運動會的開幕式上常常有大型團體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點不同的畫布所在的位置。
問題1:如何刻畫一個幾何圖形的位置?
問題2:如何創(chuàng)建坐標系?
二、學(xué)生活動
學(xué)生回顧
刻畫一個幾何圖形的位置,需要設(shè)定一個參照系
1、數(shù)軸它使直線上任一點P都可以由惟一的實數(shù)x確定
2、平面直角坐標系
在平面上,當取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標系。它使平面上任一點P都可以由惟一的實數(shù)對(x,y)確定。
3、空間直角坐標系
在空間中,選擇兩兩垂直且交于一點的三條直線,當取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標系。它使空間上任一點P都可以由惟一的實數(shù)對(x,y,z)確定。
三、講解新課:
1、建立坐標系是為了確定點的位置,因此,在所建的坐標系中應(yīng)滿足:
任意一點都有確定的坐標與其對應(yīng);反之,依據(jù)一個點的坐標就能確定這個點的位置
2、確定點的位置就是求出這個點在設(shè)定的坐標系中的坐標
四、數(shù)學(xué)運用
例1選擇適當?shù)钠矫嬷苯亲鴺讼担硎具呴L為1的正六邊形的.頂點。
變式訓(xùn)練
如何通過它們到點O的距離以及它們相對于點O的方位來刻畫,即用”距離和方向”確定點的位置
例2已知B村位于A村的正西方1公里處,原計劃經(jīng)過B村沿著北偏東60的方向設(shè)一條地下管線m.但在A村的西北方向400米出,發(fā)現(xiàn)一古代文物遺址W.根據(jù)初步勘探的結(jié)果,文物管理部門將遺址W周圍100米范圍劃為禁區(qū)。試問:埋設(shè)地下管線m的計劃需要修改嗎?
變式訓(xùn)練
1一炮彈在某處爆炸,在A處聽到爆炸的時間比在B處晚2s,已知A、B兩地相距800米,并且此時的聲速為340m/s,求曲線的方程
2在面積為1的中,建立適當?shù)淖鴺讼担笠訫,N為焦點并過點P的橢圓方程
例3已知Q(a,b),分別按下列條件求出P的坐標
。1)P是點Q關(guān)于點M(m,n)的對稱點
。2)P是點Q關(guān)于直線l:x-y+4=0的對稱點(Q不在直線1上)
變式訓(xùn)練
用兩種以上的方法證明:三角形的三條高線交于一點。
思考
通過平面變換可以把曲線變?yōu)橹行脑谠c的單位圓,請求出該復(fù)合變換?
五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標系的意義。
2、利用平面直角坐標系解決相應(yīng)的數(shù)學(xué)問題。
【高二數(shù)學(xué)優(yōu)秀教案】相關(guān)文章:
高二數(shù)學(xué)教案(優(yōu)秀2篇)03-24
高二數(shù)學(xué)教案11-28
高二數(shù)學(xué)教學(xué)反思優(yōu)秀10-25
高二數(shù)學(xué)教案模板10-24
高二物理優(yōu)秀教案10-17
高二數(shù)學(xué)教學(xué)反思優(yōu)秀(優(yōu))05-12
職高高二數(shù)學(xué)教案04-22