- 相關(guān)推薦
數(shù)學(xué)等差數(shù)列教案優(yōu)秀
作為一名人民教師,可能需要進(jìn)行教案編寫工作,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。來(lái)參考自己需要的教案吧!下面是小編幫大家整理的數(shù)學(xué)等差數(shù)列教案優(yōu)秀,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
數(shù)學(xué)等差數(shù)列教案優(yōu)秀1
《等差數(shù)列》教案設(shè)計(jì)
授課教師授課班級(jí)課題3.2.1等差數(shù)列(一)課型新授課教學(xué)目標(biāo)知識(shí)目標(biāo)等差數(shù)列的定義。
等差數(shù)列的通項(xiàng)公式。能力目標(biāo)明確等差數(shù)列的定義。
掌握等差數(shù)列的通項(xiàng)公式,并能運(yùn)用其解決問(wèn)題。情感目標(biāo)培養(yǎng)學(xué)生的觀察能力。
進(jìn)一步提高學(xué)生的推理、歸納能力。
培養(yǎng)學(xué)生的應(yīng)用意識(shí)。教學(xué)重點(diǎn)等差數(shù)列的定義的理解和掌握。
等差數(shù)列的通項(xiàng)公式的推導(dǎo)和應(yīng)用。教學(xué)難點(diǎn)等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用。教學(xué)過(guò)程教學(xué)環(huán)節(jié)和教學(xué)內(nèi)容設(shè)計(jì)意圖【復(fù)習(xí)回顧】(2分鐘)
數(shù)列的定義以及數(shù)列的通項(xiàng)公式和遞推公式。
【引入】(3分鐘)
某人要用彩燈裝飾圣誕樹(shù),這個(gè)人做事喜歡按一定的規(guī)律去做,他在圣誕樹(shù)的頂尖裝上1個(gè)彩燈,在第一層裝上4個(gè),第二層裝上7個(gè),第三層裝上10個(gè),第四層裝上13個(gè)。如果有第五層,你能猜得出他要裝上多少個(gè)彩燈嗎?他的規(guī)律是怎樣的?
你能根據(jù)規(guī)律在( )內(nèi)填上合適的`數(shù)嗎?
。1)1,4,7,10,13,()
。2)21,21.5,22,(),23,23.5,…
。3)8,(),2,-1,-4,…
。4)-7,-11,-15,(),-23
共同特點(diǎn):從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù)。這樣的數(shù)列叫做等差數(shù)列。
【講授新課】(16分鐘)
一、等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。
用符號(hào)表示:
教師活動(dòng):分析定義,強(qiáng)調(diào)關(guān)鍵的地方,幫助學(xué)生理解和掌握。
問(wèn)題:1.數(shù)列(1)(2)(3)(4)的公差分別是多少?
2、(5)1,3,5,7,9,2,4,6,8,10
(6)5,5,5,5,5,5 ……是等差數(shù)列嗎?
3、求等差數(shù)列1,4,7,10,13,16,…的第100項(xiàng)。
師生一起討論回答。
二、等差數(shù)列的通項(xiàng)公式
如果等差數(shù)列的首項(xiàng)是,公差是d,則據(jù)其定義可得:
即:
即:
即:
由此歸納等差數(shù)列的通項(xiàng)公式可得:
∴已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)和公差d,便可求得其通項(xiàng)
思考:已知等差數(shù)列的第m項(xiàng)和公差d,這個(gè)等差數(shù)列的通項(xiàng)公式是?答:
【例題講解】(8分鐘)
數(shù)學(xué)等差數(shù)列教案優(yōu)秀2
【教學(xué)目標(biāo)】
一、知識(shí)與技能
1、掌握等差數(shù)列前n項(xiàng)和公式;
2、體會(huì)等差數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程;
3、會(huì)簡(jiǎn)單運(yùn)用等差數(shù)列前n項(xiàng)和公式。
二、過(guò)程與方法
1.通過(guò)對(duì)等差數(shù)列前n項(xiàng)和公式的推導(dǎo),體會(huì)倒序相加求和的思想方法;
2、通過(guò)公式的運(yùn)用體會(huì)方程的思想。
三、情感態(tài)度與價(jià)值觀
結(jié)合具體模型,將教材知識(shí)和實(shí)際生活聯(lián)系起來(lái),使學(xué)生感受數(shù)學(xué)的實(shí)用性,有效激發(fā)學(xué)習(xí)興趣,并通過(guò)對(duì)等差數(shù)列求和歷史的了解,滲透數(shù)學(xué)史和數(shù)學(xué)文化。
【教學(xué)重點(diǎn)】
等差數(shù)列前n項(xiàng)和公式的推導(dǎo)和應(yīng)用。
【教學(xué)難點(diǎn)】
在等差數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程中體會(huì)倒序相加的思想方法。
【重點(diǎn)、難點(diǎn)解決策略】
本課在設(shè)計(jì)上采用了由特殊到一般、從具體到抽象的教學(xué)策略。利用數(shù)形結(jié)合、類比歸納的思想,層層深入,通過(guò)學(xué)生自主探究、分析、整理出推導(dǎo)公式的思路,同時(shí),借助多媒體的直觀演示,幫助學(xué)生理解,師生互動(dòng)、講練結(jié)合,從而突出重點(diǎn)、突破教學(xué)難點(diǎn)。
【教學(xué)用具】
多媒體軟件,電腦
【教學(xué)過(guò)程】
一、明確數(shù)列前n項(xiàng)和的定義,確定本節(jié)課中心任務(wù):
本節(jié)課我們來(lái)學(xué)習(xí)《等差數(shù)列的前n項(xiàng)和》,那么什么叫數(shù)列的前n項(xiàng)和呢,對(duì)于數(shù)列{an}:a1,a2,a3,…,an,…我們稱a1+a2+a3+…+an為數(shù)列{an}的前n項(xiàng)和,用sn表示,記sn=a1+a2+a3+…+an,如S1 =a1,S7 =a1+a2+a3+……+a7,下面我們來(lái)共同探究如何求等差數(shù)列的前n項(xiàng)和。
二、問(wèn)題牽引,探究發(fā)現(xiàn)
問(wèn)題1:(播放媒體資料情景引入)印度泰姬陵世界七大奇跡之一。傳說(shuō)陵寢中有一個(gè)三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見(jiàn)圖),奢靡之程度,可見(jiàn)一斑。你知道這個(gè)圖案一共花了多少圓寶石嗎?
即:S100=1+2+3+······+100=?
著名數(shù)學(xué)家高斯小時(shí)候就會(huì)算,聞名于世;那么小高斯是如何快速地得出答案的呢?請(qǐng)同學(xué)們思考高斯方法的特點(diǎn),適合類型和方法本質(zhì)。
特點(diǎn):首項(xiàng)與末項(xiàng)的和:1+100=101,第2項(xiàng)與倒數(shù)第2項(xiàng)的和:2+99=101,第3項(xiàng)與倒數(shù)第3項(xiàng)的和:3+98=101,· · · · · ·
第50項(xiàng)與倒數(shù)第50項(xiàng)的和:50+51=101,于是所求的和是:101×50=5050.
1+2+3+ ······ +100= 101×50 = 5050
同學(xué)們討論后總結(jié)發(fā)言:等差數(shù)列項(xiàng)數(shù)為偶數(shù)相加時(shí)首尾配對(duì),變不同數(shù)的加法運(yùn)算為相同數(shù)的乘法運(yùn)算大大提高效率。高斯的方法很妙,如果等差數(shù)列的項(xiàng)數(shù)為奇數(shù)時(shí)怎么辦呢?
探索與發(fā)現(xiàn)1:假如讓你計(jì)算從第一層到第21層的珠寶數(shù),高斯的首尾配對(duì)法行嗎?
即計(jì)算S21=1+2+3+ ······ +21的值,在這個(gè)過(guò)程中讓學(xué)生發(fā)現(xiàn)當(dāng)項(xiàng)數(shù)為奇數(shù)時(shí),首尾配對(duì)出現(xiàn)了問(wèn)題,通過(guò)動(dòng)畫演示引導(dǎo)幫助學(xué)生思考解決問(wèn)題的辦法,為引出倒序相加法做鋪墊。
把“全等三角形”倒置,與原圖構(gòu)成平行四邊形。平行四邊形中的每行寶石的個(gè)數(shù)均為21個(gè),共21行。有什么啟發(fā)?
1+ 2 + 3 + …… +20 +21
21 + 20 + 19 + …… + 2 +1
S21=1+2+3+…+21=(21+1)×21÷2=231
這個(gè)方法也很好,那么項(xiàng)數(shù)為偶數(shù)這個(gè)方法還行嗎?
探索與發(fā)現(xiàn)2:第5層到12層一共有多少顆圓寶石?
學(xué)生探究的同時(shí)通過(guò)動(dòng)畫演示幫助學(xué)生思考剛才的方法是否同樣可行?請(qǐng)同學(xué)們自主探究一下(老師演示動(dòng)畫幫助學(xué)生)
S8=5+6+7+8+9+10+11+12=
【設(shè)計(jì)意圖】進(jìn)一步引導(dǎo)學(xué)生探究項(xiàng)數(shù)為偶數(shù)的等差數(shù)列求和時(shí)倒序相加是否可行。從而得出倒序相加法適合任意項(xiàng)數(shù)的等差數(shù)列求和,最終確立倒序相加的思想和方法!
好,這樣我們就找到了一個(gè)好方法——倒序相加法!現(xiàn)在來(lái)試一試如何求下面這個(gè)等差數(shù)列的前n項(xiàng)和?
問(wèn)題2:等差數(shù)列1,2,3,…,n,…的前n項(xiàng)和怎么求呢?
解:(根據(jù)前面的學(xué)習(xí),請(qǐng)學(xué)生自主思考獨(dú)立完成)
【設(shè)計(jì)意圖】強(qiáng)化倒序相加法的理解和運(yùn)用,為更一般的等差數(shù)列求和打下基礎(chǔ)。
至此同學(xué)們已經(jīng)掌握了倒序相加法,相信大家可以推導(dǎo)更一般的等差數(shù)列前n項(xiàng)和公式了。
問(wèn)題3:對(duì)于一般的等差數(shù)列{an}首項(xiàng)為a1,公差為d,如何推導(dǎo)它的前n項(xiàng)和sn公式呢?
即求=a1+a2+a3+……+an=
∴(1)+(2)可得:2
∴
公式變形:將代入可得:
【設(shè)計(jì)意圖】學(xué)生在前面的探究基礎(chǔ)上水到渠成順理成章很快就可以推導(dǎo)出一般等差數(shù)列的前n項(xiàng)和公式,從而完成本節(jié)課的中心任務(wù)。在這個(gè)過(guò)程中放手讓學(xué)生自主推導(dǎo),同時(shí)也復(fù)習(xí)等差數(shù)列的通項(xiàng)公式和基本性質(zhì)。
三、公式的認(rèn)識(shí)與理解:
1、根據(jù)前面的推導(dǎo)可知等差數(shù)列求和的兩個(gè)公式為:
(公式一)
。ü蕉
探究:1、(1)相同點(diǎn):都需知道a1與n;
。2)不同點(diǎn):第一個(gè)還需知道an,第二個(gè)還需知道d;
(3)明確若a1,d,n,an中已知三個(gè)量就可求Sn。
2、兩個(gè)公式共涉及a1,d,n,an,Sn五個(gè)量,“知三”可“求二”。
2、探索與發(fā)現(xiàn)3:等差數(shù)列前n項(xiàng)和公式與梯形面積公式有什么聯(lián)系?
用梯形面積公式記憶等差數(shù)列前n項(xiàng)和公式,這里對(duì)圖形進(jìn)行了割、補(bǔ)兩種處理,對(duì)應(yīng)著等差數(shù)列n項(xiàng)和的兩個(gè)公式。,請(qǐng)學(xué)生聯(lián)想思考總結(jié)來(lái)有助于記憶。
【設(shè)計(jì)意圖】幫助學(xué)生類比聯(lián)想,拓展思維,增加興趣,強(qiáng)化記憶
四、公式應(yīng)用、講練結(jié)合
1、練一練:
有了兩個(gè)公式,請(qǐng)同學(xué)們來(lái)練一練,看誰(shuí)做的快做的對(duì)!
根據(jù)下列各題中的條件,求相應(yīng)的等差數(shù)列{an}的Sn:
(1)a1=5,an=95,n=10
解:500
。2)a1=100,d=-2,n=50
解:
【設(shè)計(jì)意圖】熟悉并強(qiáng)化公式的理解和應(yīng)用,進(jìn)一步鞏固“知三求二”。
下面我們來(lái)看兩個(gè)例題:
2、例題1:
20xx年11月14日教育部下發(fā)了<<關(guān)于在中小學(xué)實(shí)施“校校通”工程的通知>>。某市據(jù)此提出了實(shí)施“校校通”工程的總目標(biāo):從20xx年起用10年時(shí)間,在全市中小學(xué)建成不同標(biāo)準(zhǔn)的校園網(wǎng)。據(jù)測(cè)算,20xx年該市用于“校校通”工程的`經(jīng)費(fèi)為500萬(wàn)元。為了保證工程的順利實(shí)施,計(jì)劃每年投入的資金都比上一年增加50萬(wàn)元。那么從20xx年起的未來(lái)10年內(nèi),該市在“校校通”工程中的總投入是多少?
解:設(shè)從20xx年起第n年投入的資金為an,根據(jù)題意,數(shù)列{an}是一個(gè)等差數(shù)列,其中a1=500,d=50
那么,到20xx年(n=10),投入的資金總額為
答:從20xx年起的未來(lái)10年內(nèi),該市在“校校通”工程中的總投入是7250萬(wàn)元。
【設(shè)計(jì)意圖】讓學(xué)生體會(huì)數(shù)列知識(shí)在生活中的應(yīng)用及簡(jiǎn)單的數(shù)學(xué)建模思想方法。
3、例題2:
已知一個(gè)等差數(shù)列{an}的前10項(xiàng)的和是310,前20項(xiàng)的和是1220,由這些條件可以確定這個(gè)等差數(shù)列的前n項(xiàng)和的公式嗎?
解:
法1:由題意知
,代入公式得:
解得,法2:由題意知
,代入公式得:
,即,②①得,故
由得故
【設(shè)計(jì)意圖】掌握并能靈活應(yīng)用公式并體會(huì)方程的思想方法。
4、反饋達(dá)標(biāo):
練習(xí)一:在等差數(shù)列{an}中,a1=20,an=54,sn =999,求n。
解:由解n=27
練習(xí)2:已知{an}為等差數(shù)列,求公差。
解:由公式得
即d=2
【設(shè)計(jì)意圖】進(jìn)一強(qiáng)化求和公式的靈活應(yīng)用及化歸的思想(化歸到首項(xiàng)和公差這兩個(gè)基本元)。
五、歸納總結(jié)分享收獲:(活躍課堂氣氛,鼓勵(lì)學(xué)生大膽發(fā)言,培養(yǎng)總結(jié)和表達(dá)能力)
1、倒序相加法求和的思想及應(yīng)用;
2、等差數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程;
3、掌握等差數(shù)列的兩個(gè)求和公式,;
4、前n項(xiàng)和公式的靈活應(yīng)用及方程的思想。
…………
六、作業(yè)布置:
(一)書(shū)面作業(yè):
1、已知等差數(shù)列{an},其中d=2,n=15,an =—10,求a1及sn。
2、在a,b之間插入10個(gè)數(shù),使它們同這兩個(gè)數(shù)成等差數(shù)列,求這10個(gè)數(shù)的和。
。ǘ┱n后思考:
思考:等差數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法除了倒序相加法還有沒(méi)有其它方法呢?
【設(shè)計(jì)意圖】通過(guò)布置書(shū)面作業(yè)鞏固所學(xué)知識(shí)及方法,同時(shí)通過(guò)布置課后思考題來(lái)延伸知識(shí)拓展思維。
附:板書(shū)設(shè)計(jì)
等差數(shù)列的前n項(xiàng)和
1、數(shù)列前n項(xiàng)和的定義:
2、等差數(shù)列前n項(xiàng)和公式的推導(dǎo):
3、公式的認(rèn)識(shí)與理解:
公式一:
公式二:
四:例題及解答:
議練活動(dòng):
xxx
數(shù)學(xué)等差數(shù)列教案優(yōu)秀3
一、教學(xué)內(nèi)容分析
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)·數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。
二、學(xué)生學(xué)習(xí)情況分析
教學(xué)內(nèi)容針對(duì)的是高二的學(xué)生,經(jīng)過(guò)高中一年的學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也可能有一部分學(xué)生的基礎(chǔ)較弱,所以在授課時(shí)要從具體的生活實(shí)例出發(fā),使學(xué)生產(chǎn)生學(xué)習(xí)的興趣,注重引導(dǎo)、啟發(fā)學(xué)生的積極主動(dòng)的去學(xué)習(xí)數(shù)學(xué),從而促進(jìn)思維能力的進(jìn)一步提高。
三、設(shè)計(jì)思想
1.教法
⑴誘導(dǎo)思維法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性。
⑵分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的.積極性。
、侵v練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn)。
2.學(xué)法
引導(dǎo)學(xué)生首先從四個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、女子舉重獎(jiǎng)項(xiàng)設(shè)置問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法。
用多種方法對(duì)等差數(shù)列的通項(xiàng)公式進(jìn)行推導(dǎo)。
在引導(dǎo)分析時(shí),留出“空白”,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見(jiàn),把思路方法和需要解決的問(wèn)題弄清。
四、教學(xué)目標(biāo)
通過(guò)本節(jié)課的學(xué)習(xí)使學(xué)生能理解并掌握等差數(shù)列的概念,能用定義判斷一個(gè)數(shù)列是否為等差數(shù)列,引導(dǎo)學(xué)生了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想,掌握等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,并能解決簡(jiǎn)單的實(shí)際問(wèn)題;并在此過(guò)程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力,在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力。
五、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):
、俚炔顢(shù)列的概念。
、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。
難點(diǎn):
、倮斫獾炔顢(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義。
②理解等差數(shù)列是一種函數(shù)模型。
關(guān)鍵:
等差數(shù)列概念的理解及由此得到的“性質(zhì)”的方法。
六、教學(xué)過(guò)程
。裕
【數(shù)學(xué)等差數(shù)列教案優(yōu)秀】相關(guān)文章:
等差數(shù)列教案優(yōu)秀11-21
等差數(shù)列教案03-10
數(shù)學(xué)圓的認(rèn)識(shí)教案優(yōu)秀09-11
(優(yōu)秀)小學(xué)數(shù)學(xué)教案08-01
小學(xué)數(shù)學(xué)教案[優(yōu)秀]07-21