有理數(shù)教案
作為一名教職工,往往需要進(jìn)行教案編寫工作,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。那要怎么寫好教案呢?下面是小編收集整理的有理數(shù)教案,希望對(duì)大家有所幫助。
有理數(shù)教案1
學(xué)習(xí)目標(biāo):
1、理解加減法統(tǒng)一成加法運(yùn)算的意義。
2、會(huì)將有理數(shù)的加減混合運(yùn)算轉(zhuǎn)化為有理數(shù)的加法運(yùn)算。
3、培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的信心。
學(xué)習(xí)重點(diǎn)、難點(diǎn):有理數(shù)加減法統(tǒng)一成加法運(yùn)算
教學(xué)方法:講練相結(jié)合
教學(xué)過(guò)程
一、學(xué)前準(zhǔn)備
1、一架飛機(jī)作特技表演,起飛后的高度變化如下表:
高度的變化 上升4。5千米 下降3。2千米 上升1。1千米 下降1。4千米
記作 +4。5千米 3。2千米 +1。1千米 1。4千米
請(qǐng)你們想一想,并和同伴一起交流,算算此時(shí)飛機(jī)比起飛點(diǎn)高了 千米。
2、你是怎么算出來(lái)的,方法是
二、探究新知
1、現(xiàn)在我們來(lái)研究(20)+(+3)(5)(+7),該怎么計(jì)算呢?還是先自己獨(dú)立動(dòng)動(dòng)手吧!
2、怎么樣,計(jì)算出來(lái)了嗎,是怎樣計(jì)算的,與同伴交流交流,師巡視指導(dǎo)。
3、師生共同歸納:遇到一個(gè)式子既有加法,又有減法,第一步應(yīng)該先把減法轉(zhuǎn)化為 。再把加號(hào)記在腦子里,省略不寫
如:(—20)+(+3)—(—5)—(+7) 有加法也有減法
=(—20)+(+3)+(+5)+(—7) 先把減法轉(zhuǎn)化為加法
= —20+3+5—7 再把加號(hào)記在腦子里,省略不寫
可以讀作:負(fù)20、正3、正5、負(fù)7的 或者負(fù)20加3加5減7。
4、師生完整寫出解題過(guò)程
三、解決問(wèn)題
1、解決引例中的問(wèn)題,再比較前面的'方法,你的感覺(jué)是
2、例題:計(jì)算—4。4—(—4 )—(+2 )+(—2 )+12。4
3、練習(xí):計(jì)算 1)(7)(+5)+(4)(10)
三、鞏固
1、小結(jié):說(shuō)說(shuō)這節(jié)課的收獲
2、P241、2
3、計(jì)算
1)2718+(7)32 2)
四、作業(yè)
1、P255 2、P26第8題、14題
有理數(shù)教案2
教學(xué)目標(biāo)
1、知道有理數(shù)混合運(yùn)算的運(yùn)算順序,能正確進(jìn)行有理數(shù)的混合運(yùn)算;
2、會(huì)用計(jì)算器進(jìn)行較繁雜的有理數(shù)混合運(yùn)算。
教學(xué)重點(diǎn)
1、有理數(shù)的混合運(yùn)算;
2、運(yùn)用運(yùn)算律進(jìn)行有理數(shù)的混合運(yùn)算的簡(jiǎn)便計(jì)算。
教學(xué)難點(diǎn)
運(yùn)用運(yùn)算律進(jìn)行有理數(shù)的混合運(yùn)算的簡(jiǎn)便計(jì)算。
有理數(shù)的混合運(yùn)算的運(yùn)算順序
也就是說(shuō),在進(jìn)行含有加、減、乘、除的混合運(yùn)算時(shí),應(yīng)按照運(yùn)算級(jí)別從高到低進(jìn)行,因?yàn)槌朔绞潜瘸顺咭患?jí)的運(yùn)算,所以像這樣的有理數(shù)的混合運(yùn)算,有以下運(yùn)算順序:
先乘方,再乘除,最后加減。如果有括號(hào),先進(jìn)行括號(hào)內(nèi)的運(yùn)算。
你會(huì)根據(jù)有理數(shù)的運(yùn)算順序計(jì)算上面的算式嗎?
2、8有理數(shù)的混合運(yùn)算:同步練習(xí)
1、有依次排列的3個(gè)數(shù):2,9,7,對(duì)任意相鄰的兩個(gè)數(shù),都用右邊的數(shù)減去左邊的.數(shù),所得之差寫在這兩個(gè)數(shù)之間,可產(chǎn)生一個(gè)新數(shù)串:2,7,9,—2,7,這稱為第一次操作。做第二次同樣的操作后也可產(chǎn)生一個(gè)新數(shù)串:2,5,7,2,9,—11,—2,9,7,繼續(xù)依次操作下去,問(wèn):從數(shù)串2,9,7開始操作第一百次以后所產(chǎn)生的那個(gè)新數(shù)串的所有數(shù)之和是。
《2、8有理數(shù)的混合運(yùn)算》課后訓(xùn)練
1、興旺肉聯(lián)廠的冷藏庫(kù)能使冷藏食品每小時(shí)降溫3 ℃,每開庫(kù)一次,庫(kù)內(nèi)溫度上升4 ℃,現(xiàn)有12 ℃的肉放入冷藏庫(kù),2小時(shí)后開了一次庫(kù),再過(guò)3小時(shí)后又開了一次庫(kù),再關(guān)上庫(kù)門4小時(shí)后,肉的溫度是多少攝氏度?
有理數(shù)教案3
教學(xué)目標(biāo)
1。理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號(hào)法則和絕對(duì)值運(yùn)算法則,并初步理解有理數(shù)乘法法則的合理性;
2。能根據(jù)有理數(shù)乘法法則熟練地進(jìn)行有理數(shù)乘法運(yùn)算,使學(xué)生掌握多個(gè)有理數(shù)相乘的積的符號(hào)法則;
3.三個(gè)或三個(gè)以上不等于0的有理數(shù)相乘時(shí),能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡(jiǎn)化運(yùn)算過(guò)程;
4.通過(guò)有理數(shù)乘法法則及運(yùn)算律在乘法運(yùn)算中的運(yùn)用,培養(yǎng)學(xué)生的運(yùn)算能力;
5.本節(jié)課通過(guò)行程問(wèn)題說(shuō)明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識(shí)來(lái)源于生活,并應(yīng)用于生活。
教學(xué)建議
(一)重點(diǎn)、難點(diǎn)分析
本節(jié)的教學(xué)重點(diǎn)是能夠熟練進(jìn)行有理數(shù)的乘法運(yùn)算。依據(jù)有理數(shù)的乘法法則和運(yùn)算律靈活進(jìn)行有理數(shù)乘法運(yùn)算是進(jìn)一步學(xué)習(xí)除法運(yùn)算和乘方運(yùn)算的基礎(chǔ)。有理數(shù)的乘法運(yùn)算和加法運(yùn)算一樣,都包括符號(hào)判定與絕對(duì)值運(yùn)算兩個(gè)步驟。因數(shù)不包含0的乘法運(yùn)算中積的符號(hào)取決于因數(shù)中所含負(fù)號(hào)的個(gè)數(shù)。當(dāng)負(fù)號(hào)的個(gè)數(shù)為奇數(shù)時(shí),積的符號(hào)為負(fù)號(hào);當(dāng)負(fù)號(hào)的個(gè)數(shù)為偶數(shù)時(shí),積的符號(hào)為正數(shù)。積的絕對(duì)值是各個(gè)因數(shù)的絕對(duì)值的積。運(yùn)用乘法交換律恰當(dāng)?shù)慕Y(jié)合因數(shù)可以簡(jiǎn)化運(yùn)算過(guò)程。
本節(jié)的難點(diǎn)是對(duì)有理數(shù)的乘法法則的理解。有理數(shù)的乘法法則中的“同號(hào)得正,異號(hào)得負(fù)”只是針對(duì)兩個(gè)因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號(hào)和積的絕對(duì)值的方法。即兩個(gè)因數(shù)符號(hào)相同,積的符號(hào)是正號(hào);兩個(gè)因數(shù)符號(hào)不同,積的符號(hào)是負(fù)號(hào)。積的絕對(duì)值是這兩個(gè)因數(shù)的絕對(duì)值的積。
。ǘ┲R(shí)結(jié)構(gòu)
。ㄈ┙谭ńㄗh
1.有理數(shù)乘法法則,實(shí)際上是一種規(guī)定。行程問(wèn)題是為了了解這種規(guī)定的合理性。
2.兩數(shù)相乘時(shí),確定符號(hào)的依據(jù)是“同號(hào)得正,異號(hào)得負(fù)”.絕對(duì)值相乘也就是小學(xué)學(xué)過(guò)的算術(shù)乘法.
3.基礎(chǔ)較差的同學(xué),要注意乘法求積的符號(hào)法則與加法求和的符號(hào)法則的區(qū)別。
4.幾個(gè)數(shù)相乘,如果有一個(gè)因數(shù)為0,那么積就等于0.反之,如果積為0,那么,至少有一個(gè)因數(shù)為0.
5.小學(xué)學(xué)過(guò)的乘法交換律、結(jié)合律、分配律對(duì)有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負(fù)有理數(shù)。
6.如果因數(shù)是帶分?jǐn)?shù),一般要將它化為假分?jǐn)?shù),以便于約分。
教學(xué)目標(biāo)
1.使學(xué)生在了解有理數(shù)的乘法意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;
2.通過(guò)有理數(shù)的乘法運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力;
3.通過(guò)教材給出的行程問(wèn)題,認(rèn)識(shí)數(shù)學(xué)來(lái)源于實(shí)踐并反作用于實(shí)踐。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):依據(jù)有理數(shù)的乘法法則,熟練進(jìn)行有理數(shù)的乘法運(yùn)算;
難點(diǎn):有理數(shù)乘法法則的理解.
課堂教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問(wèn)題
1.計(jì)算(-2)+(-2)+(-2).
2.有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習(xí)四則運(yùn)算是在有理數(shù)的什么范圍中進(jìn)行的?(非負(fù)數(shù))
3.有理數(shù)加減運(yùn)算中,關(guān)鍵問(wèn)題是什么?和小學(xué)運(yùn)算中最主要的不同點(diǎn)是什么?(符號(hào)問(wèn)題)
4.根據(jù)有理數(shù)加減運(yùn)算中引出的.新問(wèn)題主要是負(fù)數(shù)加減,運(yùn)算的關(guān)鍵是確定符號(hào)問(wèn)題,你能不能猜出在有理數(shù)乘法以及以后學(xué)習(xí)的除法中將引出的新內(nèi)容以及關(guān)鍵問(wèn)題是什么?(負(fù)數(shù)問(wèn)題,符號(hào)的確定)
二、師生共同研究有理數(shù)乘法法則
問(wèn)題1 水庫(kù)的水位每小時(shí)上升3厘米,2小時(shí)上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
問(wèn)題2 水庫(kù)的水位平均每小時(shí)下降3厘米,2小時(shí)上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引導(dǎo)學(xué)生比較①,②得出:
把一個(gè)因數(shù)換成它的相反數(shù),所得的積是原來(lái)的積的相反數(shù).
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3×(-2)=?(-3)×(-2)=?(學(xué)生答)
把3×(-2)和①式對(duì)比,這里把一個(gè)因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來(lái)的積“6”的相反數(shù)“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式對(duì)比,這里把一個(gè)因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來(lái)的積“-6”的相反數(shù)“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘;
任何數(shù)同0相乘,都得0.
繼而教師強(qiáng)調(diào)指出:
“同號(hào)得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習(xí)的乘法,有理數(shù)中特別注意“負(fù)負(fù)得正”和“異號(hào)得負(fù)”.
用有理數(shù)乘法法則與小學(xué)學(xué)習(xí)的乘法相比,由于介入了負(fù)數(shù),使乘法較小學(xué)當(dāng)然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號(hào)法則:“同號(hào)得正,異號(hào)得負(fù)”,符號(hào)一旦確定,就歸結(jié)為小學(xué)的乘法了.
因此,在進(jìn)行有理數(shù)乘法時(shí),需要時(shí)時(shí)強(qiáng)調(diào):先定符號(hào)后定值.
三、運(yùn)用舉例,變式練習(xí)
例1 計(jì)算:
例2 某一物體溫度每小時(shí)上升a度,現(xiàn)在溫度是0度.
(1)t小時(shí)后溫度是多少?
(2)當(dāng)a,t分別是下列各數(shù)時(shí)的結(jié)果:
、賏=3,t=2;②a=-3,t=2;
、赼=3,t=-2;④a=-3,t=-2;
教師引導(dǎo)學(xué)生檢驗(yàn)一下(2)中各結(jié)果是否合乎實(shí)際.
課堂練習(xí)
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);
2.口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
這一組題做完后讓學(xué)生自己總結(jié):一個(gè)數(shù)乘以1都等于它本身;一個(gè)數(shù)乘以-1都等于它的相反數(shù).+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同時(shí)教師強(qiáng)調(diào)指出,a可以是正數(shù),也可以是負(fù)數(shù)或0;-a未必是負(fù)數(shù),也可以是正數(shù)或0.
3.當(dāng)a,b是下列各數(shù)值時(shí),填寫空格中計(jì)算的積與和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______。
5.判斷下列方程的解是正數(shù)還是負(fù)數(shù)或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小結(jié)
今天主要學(xué)習(xí)了有理數(shù)乘法法則,大家要牢記,兩個(gè)負(fù)數(shù)相乘得正數(shù),簡(jiǎn)單地說(shuō):“負(fù)負(fù)得正”.
五、作業(yè)
1.計(jì)算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0。001); (5)-4。8×(-1。25); (6)-4。5×(-0。32).
2.計(jì)算:
3.填空(用“>”或“<”號(hào)連接):
(1)如果 a<0,b<0,那么 ab ________0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0時(shí),那么a ____________2a;
(4)如果a<0時(shí),那么a __________2a.
探究活動(dòng)
問(wèn)題: 桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過(guò)若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?
答案: “±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無(wú)法使這7只杯口全部朝下.道理很簡(jiǎn)單,用“+1”表示杯口朝上,“-1”表示杯口朝下,問(wèn)題就變成:“把7個(gè)+1每次改變其中4個(gè)的符號(hào),若干次后能否都變成-1?”考慮這7個(gè)數(shù)的乘積,由于每次都改變4個(gè)數(shù)的符號(hào),所以它們的乘積永遠(yuǎn)不變(為+1).而7個(gè)杯口全部朝下時(shí),7個(gè)數(shù)的乘積等于-1,這是不可能的.
道理竟是如此簡(jiǎn)單,證明竟是如此巧妙,這要?dú)w功于“±1”語(yǔ)言.
有理數(shù)教案4
學(xué)習(xí)過(guò)程:
一、自主學(xué)習(xí)不動(dòng)筆墨不讀書!請(qǐng)拿出你的筆和你的激情,探究新知:
1.小學(xué)學(xué)過(guò)的加法運(yùn)算律有哪些?舉例說(shuō)明運(yùn)用運(yùn)算律有何好處?
2.加法的交換律:
兩個(gè)數(shù)相加,交換xx的位置,和不變.用式子表示:a+b=。
3.加法的結(jié)合律:
《1.3.1有理數(shù)的加法》同步練習(xí)含答案
在進(jìn)行兩個(gè)異號(hào)有理數(shù)的加法運(yùn)算時(shí),其計(jì)算步驟如下:
、賹⒔^對(duì)值較大的有理數(shù)的符號(hào)作為結(jié)果的符號(hào)并記住;
、趯⒂涀〉姆(hào)和絕對(duì)值的差一起作為最終的計(jì)算結(jié)果;
、塾幂^大的絕對(duì)值減去較小的絕對(duì)值;
④求兩個(gè)有理數(shù)的絕對(duì)值;⑤比較兩個(gè)絕對(duì)值的大小.其中操作順序正確的是( )
A.①②③④⑤B.④⑤③②①C.①⑤③④②D.④⑤①③②
《1.3.1有理數(shù)的'加法》同步練習(xí)題(含答案)
10.小蟲從某點(diǎn)A出發(fā)在一直線上來(lái)回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負(fù)數(shù),爬行的各段路程依次為(單位:cm):+5,-3,+10,-8,-6,+12,-10。
(1)小蟲最后是否回到出發(fā)點(diǎn)A?
(2)在爬行過(guò)程中,如果每爬行1cm獎(jiǎng)勵(lì)一粒芝麻,那么小蟲一共得到多少粒芝麻?
解析(1)是.(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=[(+5)+(+10)+(+12)]+[(-3)+(-8)+(-6)+(-10)]=27-27=0,
所以小蟲最后回到出發(fā)點(diǎn)A。
(2)小蟲爬行的總路程為|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)。
所以小蟲一共得到54粒芝麻。
有理數(shù)教案5
一、知識(shí)與技能
理解有理數(shù)加減法可以互相轉(zhuǎn)化,能把有理數(shù)加減混合運(yùn)算統(tǒng)一為加法運(yùn)算,靈活應(yīng)用運(yùn)算律進(jìn)行計(jì)算。
二、過(guò)程與方法
經(jīng)歷綜合運(yùn)用有理數(shù)加減法解決實(shí)際問(wèn)題的過(guò)程,培養(yǎng)學(xué)生分析問(wèn)題解決問(wèn)題的能力。
三、情感態(tài)度與價(jià)值觀
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)、難點(diǎn)與關(guān)鍵
1.重點(diǎn):有理數(shù)加減法統(tǒng)一為加法運(yùn)算,掌握有理數(shù)加減混合運(yùn)算。
2.難點(diǎn):省略括號(hào)和加號(hào)的加法算式的運(yùn)算方法。
3.關(guān)鍵:理解加減混合運(yùn)算可以統(tǒng)一成加法,以及正確理解省略加號(hào)的有理數(shù)加法形式。
教具準(zhǔn)備
投影儀。
四、教學(xué)過(guò)程
一、復(fù)習(xí)提問(wèn),引入新課
1.敘述有理數(shù)的加法、減法法則。
2.計(jì)算。
(1)(-8)+(-6); (2)(-8)-(-6); (3)8-(-6);
(4)(-8)-6; (5)5-14.
五、新授
我們已學(xué)習(xí)了有理數(shù)加、減法的運(yùn)算,今天我們來(lái)研究怎樣進(jìn)行有理數(shù)的加減混合運(yùn)算。
例6:計(jì)算:(-20)+(+3)-(-5)-(+7)。
分析:這個(gè)式子中有加法,也有減法,可以按照運(yùn)算順序,從左到右逐一加以計(jì)算。也可以用有理數(shù)的減法法則,則它改寫為(-20)+(+3)+(+5)+(-7)使問(wèn)題轉(zhuǎn)化為幾個(gè)有理數(shù)的加法。
解:(-20)+(+3)-(-5)-(+7)
=(-20)+(+3)+(+5)+(-7)
=[(-20)+(-7)]+[(+3)+(+5)]
=-27+(+8)
=-19
把有理數(shù)加減混合運(yùn)算轉(zhuǎn)化為加法后,常用加法交換律和結(jié)合律使計(jì)算簡(jiǎn)便。
歸納:加減混合運(yùn)算可以統(tǒng)一為加法運(yùn)算。
用式子表示為a+b-c=a+b+(-c)。
式子(-20)+(+3)+(+5)+(-7)是-20,+3,+5,-7這四個(gè)數(shù)的和,為了書寫簡(jiǎn)單,可以省略式子中的括號(hào)和加號(hào),把它寫為:-20+3+5-7.
這個(gè)式子讀作負(fù)20、正3、正5、負(fù)7的`和或讀作負(fù)20加3加5減7。
例6的運(yùn)算過(guò)程也可簡(jiǎn)寫為:
(-20)+(+3)-(-5)-(+7)
=(-20)+(+3)+(+5)+(-7) (加減法統(tǒng)一為加法)
=-20+3+5-7 (省略式子中的括號(hào)和括號(hào)前面的加號(hào))
=-20-7+3+5 (加法交換律交換時(shí),要連同符號(hào)一起交換)
=-19 (異號(hào)兩數(shù)相減)
六、鞏固練習(xí)
1.課本第24頁(yè)練習(xí)。
(1)題是已寫成省略加號(hào)的代數(shù)和,可運(yùn)用加法交換律、結(jié)合律。
原式=1+3-4-0.5=0-0.5=-0.5
(2)題運(yùn)用加減混合運(yùn)算律,同號(hào)結(jié)合。
原式=-2.4-4.6+3.5+3.5=-7+7=0
(3)題先把加減混合運(yùn)算統(tǒng)一為加法運(yùn)算。
原式=(-7)+(-5)+(-4)+(+10)
=-7-5-4+10 (省略括號(hào)和加號(hào))
=-16+10
=-6
七、課堂小結(jié)
有理數(shù)加減混合運(yùn)算通常統(tǒng)一成加法運(yùn)算,運(yùn)算時(shí)常用交換律和結(jié)合律使計(jì)算簡(jiǎn)便,一般情況采用:(1)凡相加是整數(shù)的,可以先加;(2)分母相同或易于通分的分?jǐn)?shù)相結(jié)合;(3)有互為相反數(shù)可以互相抵消的,先相加;(4)正、負(fù)數(shù)分別相加?傊J(rèn)真觀察,靈活運(yùn)用運(yùn)算律。
八、作業(yè)布置
1.課本第25頁(yè)第26頁(yè)習(xí)題1.3第5、6、13題。
九、板書設(shè)計(jì):
1.3.2 有理數(shù)的減法(2)
第四課時(shí)
1、把有理數(shù)加減混合運(yùn)算轉(zhuǎn)化為加法后,常用加法交換律和結(jié)合律使計(jì)算簡(jiǎn)便。
歸納:加減混合運(yùn)算可以統(tǒng)一為加法運(yùn)算。
用式子表示為a+b-c=a+b+(-c)。
2、隨堂練習(xí)。
3、小結(jié)。
4、課后作業(yè)。
十、課后反思
有理數(shù)教案6
教學(xué)目的:
1.知識(shí)與技能
體會(huì)有理數(shù)乘法的實(shí)際意義;
掌握有理數(shù)乘法的運(yùn)算法則和乘法法則,靈活地運(yùn)用運(yùn)算律簡(jiǎn)化運(yùn)算。
2.過(guò)程與方法
經(jīng)歷有理數(shù)乘法的推導(dǎo)過(guò)程,用分類討論的思想歸納出兩數(shù)相乘的法則,感悟中、小學(xué)數(shù)學(xué)中的乘法運(yùn)算的重要區(qū)別。
通過(guò)體驗(yàn)有理數(shù)的乘法運(yùn)算,感悟和歸納出進(jìn)行乘法運(yùn)算的一般步驟。
3.情感、態(tài)度與價(jià)值觀
通過(guò)類比和分類的思想歸納乘法法則,發(fā)展舉一反三的能力。
教學(xué)重點(diǎn):
應(yīng)用法則正確地進(jìn)行有理數(shù)乘法運(yùn)算。
教學(xué)難點(diǎn):
兩負(fù)數(shù)相乘,積的符號(hào)為正。
教具準(zhǔn)備:
多媒體。
教學(xué)過(guò)程:
一、引入
前面我們已經(jīng)學(xué)習(xí)了有理數(shù)的加法運(yùn)算和減法運(yùn)算,今天,我們開始研究有理數(shù)的乘法運(yùn)算.
問(wèn)題一:有理數(shù)包括哪些數(shù)?
回答:有理數(shù)包括正整數(shù)、正分?jǐn)?shù)、負(fù)整數(shù)、負(fù)分?jǐn)?shù)和零.
問(wèn)題二:小學(xué)已經(jīng)學(xué)過(guò)的乘法運(yùn)算,屬于有理數(shù)中哪些數(shù)的運(yùn)算?
回答:屬于正有理數(shù)和零的乘法運(yùn)算.或答:屬于正整數(shù)、正分?jǐn)?shù)和零的乘法運(yùn)算.
計(jì)算下列各題;
以上這些題,都是對(duì)正有理數(shù)與正有理數(shù)、正有理數(shù)與零、零與零的乘法,方法與小學(xué)學(xué)過(guò)的相同,今天我們要研究的有理數(shù)的乘法運(yùn)算,重點(diǎn)就是要解決引入負(fù)有理數(shù)之后,怎樣進(jìn)行乘法運(yùn)算的問(wèn)題.
二、新課
我們以蝸牛爬行距離為例,為區(qū)分方向,我們規(guī)定:向左為負(fù),向右為正,為區(qū)分時(shí)間,我們規(guī)定:現(xiàn)在前為負(fù),現(xiàn)在后為正。
如圖,一只蝸牛沿直線l爬行,它現(xiàn)在的位置恰在l上的點(diǎn)O。
1.正數(shù)與正數(shù)相乘
問(wèn)題一:如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
講解:3分后蝸牛應(yīng)在l上點(diǎn)O右邊6cm處,這可表示為
(+2)×(+3)=+6
答:結(jié)果向東運(yùn)動(dòng)了6米.
2.負(fù)數(shù)與正數(shù)相乘
問(wèn)題二:如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
講解:3分后蝸牛應(yīng)在l上點(diǎn)O右邊6cm處,這可表示為
(-2)×(+3)=(-6)
3.正數(shù)與負(fù)數(shù)相乘
問(wèn)題三:如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
講解:3分后蝸牛應(yīng)為l上點(diǎn)O左邊6cm處,這可以表示為
(+2)×(-3)=-6
4.負(fù)數(shù)與負(fù)數(shù)相乘
問(wèn)題四:如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
講解:3分前蝸牛應(yīng)為l上點(diǎn)O右邊6cm處,這可以表示為
(-2)×(-3)=+6
5.零與任何數(shù)相乘或任何數(shù)與零相乘
問(wèn)題五:原地不動(dòng)或運(yùn)動(dòng)了零次,結(jié)果是什么?
答:結(jié)果都是仍在原處,即結(jié)果都是零,若用式子表達(dá):
0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.
綜合上述五個(gè)問(wèn)題得出:
(1)(+2)×(+3)=+6;
(2)(-2)×(+3)=-6;
(3)(+2)×(-3)=-6;
(4)(-2)×(-3)=+6.
(5)任何數(shù)與零相乘都得零.
觀察上述(1)~(4)回答:
1.積的符號(hào)與因數(shù)的符號(hào)有什么關(guān)系?
2.積的絕對(duì)值與因數(shù)的絕對(duì)值有什么關(guān)系?
答:1.若兩個(gè)因數(shù)的符號(hào)相同,則積的符號(hào)為正;若兩個(gè)因數(shù)的符號(hào)相反,則積的符號(hào)為負(fù).2.積的絕對(duì)值等于兩個(gè)因數(shù)的絕對(duì)值的積.
由此我們可以得到:
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘.
(1)~(5)包括了兩個(gè)有理數(shù)相乘的所有情況,綜合上述各種情況,得到有理數(shù)乘法的法則:
口答:確定下列兩數(shù)積的符號(hào):
例題:計(jì)算下列各題:
解題步驟:
1.認(rèn)清題目類型.
2.根據(jù)法則確定積的符號(hào).
3.絕對(duì)值相乘.
練習(xí):
1.口答下列各題:
(1)6×(-9);(2)(-6)×(-9);
(3)(-6)×9;(4)(-6)×1;
(5)(-6)×(-1);(6)6×(-1);
(7)(-6)×0;(8)0×(-6);
(9)(-6)×0.25;(10)(-0.5)×(-8);
注意:由(4)(5)(6)得:一個(gè)數(shù)與1相乘得原數(shù),一個(gè)數(shù)與-1相乘,得原數(shù)的相反數(shù).
2.在表中的各個(gè)小方格里,填寫所在的'橫行的第一個(gè)數(shù)與所在直列的第一個(gè)數(shù)的積:
3.計(jì)算下列各題:
(1)(-36)×(-15);(2)-48×1.25;
4.填空:
(1)1×(-5)=____;(-1)×(-5)=____;
+(-5)=____;-(-5)=____;
(2)1×a=____;(-1)×a=____;
(3)1×|-5|=____;-1×|-5|=____;
。瓅-5|=____
(4)1+(-5)=____;(-1)+(-5)=____;
(-1)+5=____.
三、小結(jié)
(1)指導(dǎo)學(xué)生看書,精讀乘法法則.
(2)強(qiáng)調(diào)運(yùn)用法則進(jìn)行有理數(shù)乘法的步驟.
(3)比較有理數(shù)乘法的符號(hào)法則與有理數(shù)加法的符號(hào)法則的區(qū)別,以達(dá)到進(jìn)一步鞏固有理數(shù)乘法法則的目的.
四、作業(yè)
1.計(jì)算:
(1)(-16)×15;(2)(-9)×(-14);
(3)(-36)×(-1);(4)13×(-11);
(5)(-25)×16;(6)(-10)×(-16).
2.計(jì)算:
(1)2.9×(-0.4);(2)-30.5×0.2;
(3)0.72×(-1.25);(4)100×(-0.001);
(5)-4.8×(-1.25);(6)-4.5×(-0.32).
3.計(jì)算:
4.填空:(用“>”或“<”號(hào)連接)
(1)如果a<0,b>0,那么,ab____0;
(2)如果a<0,b<0,那么,ab____0;
(3)當(dāng)a>0時(shí),a____2a;
(4)當(dāng)a<0時(shí),a____2a.
板書設(shè)計(jì)
1.4有理數(shù)的乘法
法則:練習(xí)
教學(xué)設(shè)計(jì)思路
本節(jié)課是在小學(xué)已接觸到的乘法、初中剛學(xué)習(xí)過(guò)的有理數(shù)的加減法基礎(chǔ)上進(jìn)行的。通過(guò)對(duì)實(shí)際問(wèn)題的解決,引入有理數(shù)的乘法法則。在講解運(yùn)動(dòng)的例子時(shí)運(yùn)用現(xiàn)代化教學(xué)手段,把圖形中的“靜”變“動(dòng)”,增強(qiáng)了直觀性,初步培養(yǎng)想象能力。
教學(xué)反思
強(qiáng)調(diào)學(xué)生與教師一起共同參與教學(xué)活動(dòng),我們堅(jiān)持把教學(xué)活動(dòng)過(guò)程體現(xiàn)在教學(xué)中,又激發(fā)學(xué)生的思維積極性,讓學(xué)生學(xué)會(huì)分析問(wèn)題和解決問(wèn)題。
有理數(shù)教案7
學(xué)習(xí)目標(biāo)
1、掌握有理數(shù)混合運(yùn)算的法則,并能熟練地進(jìn)行有理數(shù)加、減、乘、除、乘方的混合運(yùn)算;
2、在有理數(shù)的混合運(yùn)算中,能合理地使用運(yùn)算律簡(jiǎn)化運(yùn)算。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):有理數(shù)的混合運(yùn)算.
難點(diǎn):在有理數(shù)的混合運(yùn)算中,能合理地使用運(yùn)算律簡(jiǎn)化運(yùn)算。注意符號(hào)問(wèn)題。
突破:從 小學(xué)四則混合運(yùn)算出發(fā), 采用以舊引新,課本示范,學(xué)生討論,教師點(diǎn)撥。
教學(xué)過(guò)程
環(huán)節(jié)1 、溫故知新
1、計(jì)算 ( 三分鐘練習(xí) ) :
( 1)(-2) 3 ; (2)-2 3 ; ( 3)-7+3-6 ; ( 4)(-3) × (-8) × 25 ;
( 5)(-616) ÷ (-28) ; (6)0 21 ; ( 7)3.4 × 10 4 ÷ (-5)、
2、說(shuō)一說(shuō)我們學(xué)過(guò)的有理數(shù)的運(yùn)算律:
加法交換律:
加法結(jié)合律:
乘法交換律:
乘法結(jié)合律:
乘法分配律:前面我們已經(jīng)學(xué)習(xí)了有理數(shù)的加、減、乘、除、乘方等運(yùn)算,若在一個(gè)算式里,含有以上的混合運(yùn)算,按怎樣的順序進(jìn)行運(yùn)算?本節(jié)課我們學(xué)習(xí)有理數(shù)的混合運(yùn)算
環(huán)節(jié)2、自主學(xué)習(xí):
師:請(qǐng)同學(xué)們先閱讀完預(yù)習(xí)要求,再用15分鐘時(shí)間進(jìn)行預(yù)習(xí)。
預(yù)習(xí)要求:
請(qǐng)同學(xué)們利用15分鐘的自學(xué)時(shí)間完成學(xué)習(xí)內(nèi)容中的三個(gè)模塊, 自學(xué)中保持自學(xué)環(huán)境的.安靜,認(rèn)真高效的完成自學(xué)任務(wù)。
自學(xué)內(nèi)容要求:
1 、完成法則自學(xué)模塊,理解 掌握有理數(shù)混合運(yùn)算的法則;
2 、法則的運(yùn)用。完成例1 、例2 的二個(gè)自學(xué)模塊。
自學(xué)模塊(一)
仔細(xì)閱讀課本66 頁(yè)第一段,完成下列內(nèi)容。
1、 計(jì)算:
(1) -2 ×32=
(2) (-2 ×3 )2 =
2、 運(yùn)算順序有什么不同?
3、 小組交流:
回顧小學(xué)學(xué)過(guò)的四則混合運(yùn)算順序,有理數(shù)混合運(yùn)算的順序是怎樣規(guī)定的?
有理數(shù)混合運(yùn)算法則:―――――――――――――――――――――
―――――――――――――――――――――
自學(xué)模塊(二)
例1計(jì)算:6 1 1 5
—×(-—-—)÷—
。 3 2 4
根據(jù)以下提示分析例1 計(jì)算
。薄⒗1 中是一些什么樣的運(yùn)算?像含有這樣運(yùn)算的習(xí)題與在小學(xué)時(shí)的運(yùn)算順序一樣嗎?
觀察運(yùn)算:題目中有乘法、除法、減法運(yùn)算,還有小括號(hào).
思考順序:首先計(jì)算小括號(hào)里的減法,然后再按照從左到右的順序進(jìn)行乘除運(yùn)算,這樣運(yùn)算的步驟基本清楚了.
動(dòng)筆計(jì)算:按思考的步驟進(jìn)行計(jì)算,在計(jì)算時(shí)不要“跳步”太多。
檢查結(jié)果:是否正確.
。病懗隼庇(jì)算過(guò)程
3、鞏固練習(xí)
試用兩種方法計(jì)算:
。保丁粒ǎ常矗担福拢ǎ玻
、 ;
、、
使用運(yùn)算律,解題步驟是怎樣的?能計(jì)算出相同結(jié)果嗎?但哪種方法更簡(jiǎn)便?
4、小組交流
自學(xué)模塊(三)
例2計(jì)算:(-4) 2 ×[( -1) 5 +3/4+ (-1/2) 3 ]
1、根據(jù)以下提示分析例2計(jì)算
仿照例1.
觀察運(yùn)算:
思考順序:
動(dòng)筆計(jì)算:
檢查結(jié)果:
。、寫出例2計(jì)算過(guò)程
3、鞏固練習(xí)
( 1 )(-4 × 3 2 )-(-4 × 3) 2、
。ǎ玻(-2) 2 -(-5 2 ) × (-1) 5 +87 ÷ (-3) × (-1) 4、
。场⑿〗M交流
環(huán)節(jié)3、達(dá)標(biāo)檢測(cè)
( 1)1÷(-1)+0÷4-(-4)(-1) ;
( 2)18+32÷(-2) 3 -(-4) 2 ×5、
。ǎ常┯(jì)算( 題中的字母均為自然數(shù)) :
。 (-2) 4 +(-4) 2 · (-1) 7 ] 2m · (5 3 +3 5 )、
以小組為單位計(jì)分,積分最高的組為優(yōu)勝組.
環(huán)節(jié)4、課堂小結(jié)
今天我們學(xué)習(xí)了有理數(shù)的混合運(yùn)算,要求大家做題時(shí)必須遵循“觀察—分析—?jiǎng)庸P—檢查”的程序進(jìn)行計(jì)算.
教師引導(dǎo)學(xué)生一起總結(jié)有理數(shù)混合運(yùn)算的規(guī)律.
1、先乘方,再——————————————————————
2、同級(jí)運(yùn)算———————————————————————
3、若有括號(hào)———————————————————————
在有理數(shù)的混合運(yùn)算中,能合理地使用運(yùn)算律簡(jiǎn)化運(yùn)算,并注意符號(hào)問(wèn)題。
環(huán)節(jié)5、課后作業(yè)
課本67頁(yè)習(xí)題
有理數(shù)教案8
教學(xué)目標(biāo):
1.知識(shí)與技能
掌握加法法則,體會(huì)加法法則的意義。
2.過(guò)程與方法
通過(guò)經(jīng)歷有理數(shù)加法運(yùn)算的發(fā)生過(guò)程,體驗(yàn)數(shù)的運(yùn)算探索過(guò)程,感悟有理數(shù)加法運(yùn)算的技巧及運(yùn)算規(guī)律。
通過(guò)運(yùn)算歸納出技巧,感悟絕對(duì)值不相等的異號(hào)兩數(shù)相加的技巧,突破本節(jié)內(nèi)容中的難點(diǎn)問(wèn)題。
3.情感、態(tài)度與價(jià)值觀:
養(yǎng)成積極探索、不斷追求真知的品格。
教學(xué)重點(diǎn)和難點(diǎn):
重點(diǎn):有理數(shù)加法法則;
難點(diǎn):異號(hào)兩數(shù)相加的法則。
教學(xué)安排:
第1課時(shí)。
教學(xué)過(guò)程:
一、師生共同研究有理數(shù)加法法則
我們已經(jīng)熟悉正數(shù)的加法運(yùn)算,然而實(shí)際問(wèn)題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍。
例如,足球循環(huán)賽中,可以把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的'和叫做凈勝球數(shù)。掌前言中,紅隊(duì)進(jìn)4個(gè)球,失2個(gè)球;藍(lán)隊(duì)進(jìn)1個(gè)球,失1個(gè)球。于是紅隊(duì)的凈勝球數(shù)為 4+(-2),黃隊(duì)的凈勝球數(shù)為1+(-1)。
這里用到正數(shù)與負(fù)數(shù)的加法。學(xué)生考慮一下,怎么計(jì)算 4+(-2)?
師:下面我們可以借助數(shù)軸來(lái)討論有理數(shù)的加法。
一個(gè)物體作左右方向運(yùn)動(dòng),我們規(guī)定向左為負(fù),向右為正。
、 兩次運(yùn)動(dòng)后物體從起點(diǎn)向右運(yùn)動(dòng)5m,再向右運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是什么?
有理數(shù)教案9
【目標(biāo)預(yù)覽】
知識(shí)技能:1、通過(guò)實(shí)例,了解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能運(yùn)用法則進(jìn)行計(jì)算;
2、在有理數(shù)加法法則的教學(xué)過(guò)程中,培養(yǎng)觀察、比較、歸納及運(yùn)算能力。 數(shù)學(xué)思考:1、正確地進(jìn)行有理數(shù)的加法運(yùn)算;
2、用數(shù)形結(jié)合的思想方法得出有理數(shù)加法法則。
解決問(wèn)題:能運(yùn)用有理數(shù)加法解決實(shí)際問(wèn)題。
情感態(tài)度:通過(guò)師生活動(dòng)、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過(guò)程中來(lái)。
【教學(xué)重點(diǎn)和難點(diǎn)】
重點(diǎn):了解有理數(shù)加法的意義,會(huì)根據(jù)有理數(shù)加法法則進(jìn)行有理數(shù)加法計(jì)算; 難點(diǎn):異號(hào)兩數(shù)如何相加的法則。
【情景設(shè)計(jì)】
我們來(lái)看一個(gè)大家熟悉的實(shí)際問(wèn)題:
足球比賽中進(jìn)球個(gè)數(shù)與失球個(gè)數(shù)是相反意義的量.若我們規(guī)定進(jìn)球?yàn)椤罢,失球(yàn)椤柏?fù)”。比如,進(jìn)3個(gè)球記為正數(shù):+3,失2個(gè)球記為負(fù)數(shù):-2。它們的和為凈勝球數(shù):(+3)+(-2)學(xué)校足球隊(duì)在一場(chǎng)比賽中的勝負(fù)情況如下:
(1)紅隊(duì)進(jìn)了3個(gè)球,失了2個(gè)球,那么凈勝球數(shù)是:(+3)+(-2)
(2)藍(lán)隊(duì)進(jìn)了1個(gè)球,失了1個(gè)球,那么凈勝球數(shù)是:(+1)+(-1)
這里,就需要用到正數(shù)與負(fù)數(shù)的加法。
下面,我們利用數(shù)軸一起來(lái)討論有理數(shù)的加法規(guī)律。
【探求新知】
一個(gè)物體作左右運(yùn)動(dòng),我們規(guī)定向左為負(fù),向右為正。向右運(yùn)動(dòng)5m,可以記作多少?向左運(yùn)動(dòng)5m呢?
(1)如果物體先向右運(yùn)動(dòng)5m,再向右運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢? 利用數(shù)軸演示(如圖1),把原點(diǎn)假設(shè)為運(yùn)動(dòng)起點(diǎn)。
兩次運(yùn)動(dòng)后物體從起點(diǎn)向右運(yùn)動(dòng)了8m。寫成算式是:5+3=8①
利用數(shù)軸依次討論如下問(wèn)題,引導(dǎo)學(xué)生自己尋找算式的答案:
(2)如果物體先向左運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢?
。3)如果物體先向右運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢?
。4)如果物體先向左運(yùn)動(dòng)5m,再向右運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢?
(5)如果物體先向左運(yùn)動(dòng)5m,再向右運(yùn)動(dòng)5m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢?
(6)如果物體先向右運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)5m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢?
。7)如果物體第一分鐘向右(或向左)運(yùn)動(dòng)5m,第二分鐘原地不動(dòng),那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢?
總結(jié):依次可得
。2)(-5)+(-3)=-8②
(3)5+(-3)=2③
(4)3+(-5)=-2④
。5)5+(-5)=0⑤
。6)(-5)+5=0⑥
。7)5+0=5或(-5)+0=-5⑦
觀察上述7個(gè)算式,自己歸納出有理數(shù)加法法則:
1.同號(hào)兩數(shù)相加,取相同的`符號(hào),并把絕對(duì)值相加;
2.絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值,互為相反數(shù)的兩個(gè)數(shù)相加得0;
3.一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
【范例精析】
例1計(jì)算下列算式的結(jié)果,并說(shuō)明理由:
(1)(+4)+(+7);(2)(-4)+(-7);
(3)(+4)+(-7);(4)(+9)+(-4);
(5)(+4)+(-4);(6)(+9)+(-2);
(7)(-9)+(+2);(8)(-9)+0;
(9)0+(+2);(10)0+0.
學(xué)生逐題口答后,教師小結(jié):
進(jìn)行有理數(shù)加法,先要判斷兩個(gè)加數(shù)是同號(hào)還是異號(hào),有一個(gè)加數(shù)是否為零;再根據(jù)兩個(gè)加數(shù)符號(hào)的具體情況,選用某一條加法法則.進(jìn)行計(jì)算時(shí),通常應(yīng)該先確定“和”的符號(hào),再計(jì)算“和”的絕對(duì)值.
解:(1)(-3)+(-9) (兩個(gè)加數(shù)同號(hào),用加法法則的第2條計(jì)算)
=-(3+9)(和取負(fù)號(hào),把絕對(duì)值相加)
=-12.
例3 足球循環(huán)比賽中,紅隊(duì)勝黃隊(duì)4﹕1,黃隊(duì)勝藍(lán)隊(duì)1﹕0,藍(lán)隊(duì)勝紅隊(duì)1﹕0,計(jì)算各隊(duì)的凈勝球數(shù)。
解:我們規(guī)定進(jìn)球?yàn)椤罢,失球(yàn)椤柏?fù)”。它們的和為凈勝球數(shù)。
三場(chǎng)比賽中,紅隊(duì)共進(jìn)4球,失2球,凈勝球數(shù)為(+4)+(-2)=2;
黃隊(duì)共進(jìn)2球,失4球,凈勝球數(shù)為(+2)+(-4)= -2;
藍(lán)隊(duì)共進(jìn)1球,失1球,凈勝球數(shù)為(+1)+(-1)=0;
【一試身手】
下面請(qǐng)同學(xué)們計(jì)算下列各題:
(1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
全班學(xué)生書面練,四位學(xué)生板演,教師對(duì)學(xué)生板演進(jìn)行講評(píng).
【總結(jié)陳詞】
1、這節(jié)課我們從實(shí)例出發(fā),經(jīng)過(guò)比較、歸納,得出了有理數(shù)加法的法則.今后我們經(jīng)常要用類似的思想方法研究其他問(wèn)題。
2、應(yīng)用有理數(shù)加法法則進(jìn)行計(jì)算時(shí),要同時(shí)注意確定“和”的符號(hào),計(jì)算“和”的絕對(duì)值兩件事。
【實(shí)戰(zhàn)操練】
1.計(jì)算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);
(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);
(7)33+48;(8)(-56)+37.
2.計(jì)算:
(1)(-0.9)+(-2.7);(2)3.8+(-8.4);
(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.
3.計(jì)算:
4*.用“>”或“<”號(hào)填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.
5*.分別根據(jù)下列條件,利用|a|與|b|表示a與b的和:
(1)a>0,b>0;(2) a<0,b<0;
(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.
有理數(shù)教案10
一、 知識(shí)要點(diǎn)
本章的主要內(nèi)容可以概括為有理數(shù)的概念與有理數(shù)的運(yùn)算兩部分。有理數(shù)的概念可以利用數(shù)軸來(lái)認(rèn)識(shí)、理解,同時(shí),利用數(shù)軸又可以把這些概念串在一起。有理數(shù)的運(yùn)算是全章的重點(diǎn)。在具體運(yùn)算時(shí),要注意四個(gè)方面,一是運(yùn)算法則,二是運(yùn)算律,三是運(yùn)算順序,四是近似計(jì)算。
基礎(chǔ)知識(shí):
1、大于0的數(shù)叫做正數(shù)。
2、在正數(shù)前面加上負(fù)號(hào)-的數(shù)叫做負(fù)數(shù)。
3、0既不是正數(shù)也不是負(fù)數(shù)。
4、有理數(shù)(rational number):正整數(shù)、負(fù) 整數(shù)、0、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)都可以寫 成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。
5、數(shù)軸(number axis):通常,用一條直線上的點(diǎn)表示數(shù),這條直線叫做數(shù)軸。
數(shù)軸滿足以下要求:
(1) 在直線上任取一個(gè)點(diǎn)表示數(shù)0,這個(gè)點(diǎn)叫做原點(diǎn)(origin);
(2) 通常規(guī)定直線上從原點(diǎn)向右(或上)為正方向,從原點(diǎn)向左(或下)為負(fù)方向;
(3) 選取適當(dāng)?shù)拈L(zhǎng)度為單位長(zhǎng)度。
6、相反數(shù)(opposite number):絕對(duì)值相等,只有負(fù)號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。
7、絕對(duì)值(absolute value)一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值。記做|a|。
由絕對(duì)值的定義可得:|a-b|表示數(shù)軸上a點(diǎn)到b點(diǎn)的距離。
一個(gè)正數(shù)的絕對(duì)值是它本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0.
正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù);兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
8、有理數(shù)加法法則
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。
(2)絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;橄喾磾(shù)的兩個(gè)數(shù)相加得0.
(3)一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
加法交換律:有理數(shù)的加法中,兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。表達(dá)式:a+b=b+a。
加法結(jié)合律:有理數(shù)的加法中,三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加或者先把后兩個(gè)數(shù) 相加,和不變。
表達(dá)式:(a+b)+c=a+(b+c)
9、有理數(shù)減法法則
減去一個(gè)數(shù),等于加這個(gè)數(shù)的相反數(shù)。表達(dá)式:a-b=a+(-b)
10、有理數(shù)乘法法則
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。
任何數(shù)同0相乘,都得0.
乘法交換律:一般地,有理數(shù)乘法中,兩個(gè)數(shù)相乘,交換因數(shù)的位置,積相等。表達(dá)式:ab=ba
乘法結(jié)合律:三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積相等。表達(dá)式:(ab)c=a(bc)
乘法分配律:一般地,一個(gè)數(shù)同兩個(gè)的和相乘,等于把這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。
表達(dá)式:a(b+c)=ab+ac
11、倒數(shù)
1除以一個(gè)數(shù)(零除外)的商,叫做這個(gè)數(shù)的倒數(shù)。如果兩個(gè)數(shù)互為倒數(shù),那么這兩個(gè)數(shù)的積等于1。
12、有理數(shù)除法法則:兩數(shù)相除,同號(hào)得負(fù),異號(hào)得正,并把絕對(duì)值相除。0除以任何一個(gè)不等于0的數(shù),都得0.
13、有理數(shù)的乘方:求n個(gè)相同因數(shù)的積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪(power)。an中,a叫做底數(shù)(base number),n叫做指數(shù)(exponent)。
根據(jù)有理數(shù)的乘法法則可以得出:負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。
14、有理數(shù)的混合運(yùn)算順序
(1)先乘方,再乘除,最后加減的順序進(jìn)行;
(2)同級(jí)運(yùn)算,從左到右進(jìn)行;
(3)如有括號(hào),先做括號(hào)內(nèi)的運(yùn)算,按小括號(hào)、中括號(hào)、大括號(hào)依次進(jìn)行。
15、科學(xué)技術(shù)法:把一個(gè)大于10的數(shù)表示成a﹡10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù)(即0
16、近似數(shù)(approximate number):
17、有理數(shù)可以寫成m/n(m、n是整數(shù),n0)的形式。另一方面,形如m/n(m、n是整數(shù),n0)的數(shù)都是有理數(shù)。所以有理數(shù)可以用m/n(m、n是整數(shù),n0)表示。
拓展知識(shí):
1、 數(shù)集:把一些數(shù)放 在一起,就組成一個(gè)數(shù)的集合,簡(jiǎn)稱數(shù)集。
一、(1) 所有有理數(shù)組成的數(shù)集叫做有理數(shù)集;
二、(2) 所有的整數(shù)組成的數(shù)集叫做整數(shù)集。
2、 任何有理數(shù) 都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
3、 根據(jù)絕對(duì)值的幾何意義知道:|a|0,即對(duì)任何有理數(shù)a,它的絕對(duì)值是非負(fù)數(shù)。
4、 比較兩個(gè)有理數(shù)大小的方法有:
(1) 根據(jù)有理數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)的位置直接比較;
(2) 根據(jù)規(guī)定進(jìn)行比較:兩個(gè)正數(shù);正數(shù)與零;負(fù)數(shù)與零;正數(shù)與負(fù)數(shù);兩個(gè)負(fù)數(shù),體現(xiàn)了分類討論的數(shù)學(xué)思想;
(3) 做差法:a-ba
(4) 做商法:a/b1,bab.
二、 基礎(chǔ)訓(xùn)練
選擇題
1、下列運(yùn)算中正確的是( ).
A. a2a3=a6 B. =2 C. |(3--3 D. 32=-9
2、下列各判斷句中錯(cuò)誤的是( )
A.數(shù)軸上原點(diǎn)的位置可以任意選定
B. 數(shù)軸上與原點(diǎn)的距離等于 個(gè)單位的點(diǎn)有兩個(gè)
C.與原點(diǎn)距離等于-2的點(diǎn)應(yīng)當(dāng)用原點(diǎn)左邊第2個(gè)單位的點(diǎn)來(lái)表示
D.數(shù)軸上無(wú)論怎樣靠近的兩個(gè)表示有理數(shù)的點(diǎn)之間,一定還存在著表示有理數(shù)的點(diǎn)。
3、 、 是有理數(shù),若 且 ,下列說(shuō)法 正確的是( )
A. 一定是正數(shù) B. 一定是負(fù)數(shù) C. 一定是正數(shù) D. 一定是負(fù)數(shù)
4、兩數(shù)相加,如果比每個(gè)加數(shù)都小,那么這兩個(gè)數(shù)是( )
A.同為正數(shù) B.同為負(fù)數(shù) C.一個(gè)正數(shù),一個(gè)負(fù)數(shù) D.0和一個(gè)負(fù)數(shù)
5、兩個(gè)非零有理數(shù)的和為零,則它們的商是()
A.0 B.-1 C.+1 D.不能確定
6、一個(gè)數(shù)和它的倒數(shù)相等,則這個(gè)數(shù)是( )
A.1 B.-1 C. 1 D. 1和0
7、如果|a|=-a,下列成立的是( )
A.a0 B.a0 C.a0或a=0 D.a0或a=0
8、(-2)11+(-2)10的值是( )
A.-2 B.(-2)21 C.0 D.-210
9、已知4個(gè)礦泉水空瓶可以換礦泉水一瓶,現(xiàn)有16個(gè)礦泉水空瓶,若不交錢,最多可以喝礦泉水( )
A. 3瓶 B. 4瓶 C. 5瓶 D. 6瓶
10、在下列說(shuō)法中,正確的個(gè)數(shù)是( )
⑴任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示
、茢(shù)軸上的`每一個(gè)點(diǎn)都表示一個(gè)有理數(shù)
、侨魏斡欣頂(shù)的絕對(duì)值都不可能是負(fù)數(shù)
、让總(gè)有理數(shù)都有相反數(shù)
A、1 B、2 C、3 D、4
11、如果一個(gè)數(shù)的相反數(shù)比它本身 大,那么這個(gè)數(shù)為( )
A、正數(shù) B、負(fù)數(shù)
C、整數(shù) D、不等于零的有理數(shù)
12、下列說(shuō)法正確的是( )
A、幾個(gè)有理數(shù)相乘,當(dāng)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);
B、幾個(gè)有理數(shù)相乘,當(dāng)正因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);
C、幾個(gè)有理數(shù)相乘,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);
D、幾個(gè)有理數(shù)相乘,當(dāng)積為負(fù)數(shù)時(shí),負(fù)因數(shù)有奇數(shù)個(gè);
填空題
1、在有理數(shù)-7, ,-(-1.43), ,0, ,-1.7321中,是整數(shù)的有_____________是負(fù)分?jǐn)?shù)的有_______________。
2、一般地,設(shè)a是一個(gè)正數(shù),則數(shù)軸上表示數(shù)a的點(diǎn)在原點(diǎn)的____邊,與原點(diǎn)的距離是____個(gè)單位長(zhǎng)度;表示數(shù)-a的點(diǎn)在原點(diǎn)的____邊,與原點(diǎn)的距離是____個(gè)單位長(zhǎng)度。
3、如果一個(gè)數(shù)是6位整數(shù),用科學(xué)記數(shù)法表示它時(shí),10的指數(shù)是_____;用科學(xué)記數(shù)法表示一個(gè)n位整數(shù),其中10的指數(shù)是___________.
4、實(shí)數(shù)a、b、c在數(shù)軸上的位置如圖:化簡(jiǎn)|a-b|+|b-c|-|c-a|.
5、絕對(duì)值大于1而小于4的整數(shù)有_____________________________________,其和為___________.
6、若a、b互為相反數(shù),c、d互為倒數(shù),則(a+b)3-3(cd)4=________.
7、1-2+3-4+5-6++20xx-2002的值是____________.
8、若(a-1)2+|b+2|=0,那么a+b=_____________________.
9、平方等于它本身的有理數(shù)是___________,立方等于它本身的有理數(shù)是__ ___________.
10、用四舍五入法把3.1415926精確到千分位是 ,用科學(xué)記數(shù)法表示302400,應(yīng)記為 ,近似數(shù)3.0 精確到 位。
11、正數(shù)a的絕對(duì)值為__ ________;負(fù)數(shù)b的絕對(duì)值為________
12、甲乙兩數(shù)的和為-23.4,乙數(shù)為-8.1,甲比乙大
13、在數(shù)軸上表示兩個(gè)數(shù), 的數(shù)總比 的大。(用左邊右邊填空)
14、數(shù)軸上原點(diǎn)右邊4.8厘米處的點(diǎn)表示的有理數(shù)是32,那么,數(shù)軸左邊18厘米處的點(diǎn)表示的有理數(shù)是____________。
三、強(qiáng)化訓(xùn)練
1、計(jì)算:1+2+3++20xx+2003=__________.
2、已知: 若 (a,b均為整數(shù))則a+b=
3、觀察下列等式,你會(huì)發(fā)現(xiàn)什么規(guī)律: , , ,。。。請(qǐng)將你發(fā)現(xiàn)的規(guī)律用只含一個(gè)字母n (n為正整數(shù))的等式表示出來(lái)
4、已知 ,則 ___________
5、已知 是整數(shù), 是一個(gè)偶數(shù),則a是 (奇,偶)
6、已知1+2+3++31+32+33==1733,求1-3+2-6+3-9+4-12++31-93+32-96+33-99的值。
7、在數(shù)1,2,3,,50前添+或-,并求它們的和,所得結(jié)果的最小非負(fù)數(shù)是多少?請(qǐng)列出算式解答。
8、如果有理數(shù)a,b滿足∣ab-2∣+(1-b)2=0,試求 ++ 的值。
9、如果規(guī)定符號(hào)*的意義是a*b=ab/(a+b),求2*(-3)*4的值。
10、已知|x+1|=4,(y+2)2=4,求x+y的值。
11、投資股票是一種很重要的投資方式,但股市的風(fēng)云變化又牽動(dòng)了股民的心。
例:某股民在上星期五買進(jìn)某種股票500股,每股60元,下表是本周每日該股票的漲跌情況(單位:元):
星期 一 二 三 四 五
每股漲跌 +4 +4.5 -1 -2.5 -6
第1章(1) 星期三收盤時(shí),每股是多少元?
第2章(2) 本周內(nèi)最高價(jià)是每股多少元?最低價(jià)是多少元?
第3章(3) 已知買進(jìn)股票是付了1.5的手續(xù)費(fèi),賣出時(shí)需付成交額1.5的手續(xù)費(fèi)和1的交易費(fèi),如果在星期五收盤前將全部股票一次性地賣出,他的收益情況如何?
第4章(4) 以買進(jìn)的股價(jià)為0點(diǎn),用折線統(tǒng)計(jì)圖表示本周該股的股價(jià)情況。
四、競(jìng)賽訓(xùn)練:
1、 最小的非負(fù)有理數(shù)與最大的非正有理數(shù)的和是
2、 乘積 =
3、 比較大小:A= ,B= ,則A B
4、 滿足不等式104105的整數(shù)A的個(gè)數(shù)是x104+1,則x的值是( )
A、9B、8C、7D、6
5、 最小的一位數(shù)的質(zhì)數(shù)與最小的兩位數(shù)的質(zhì)數(shù)的積是()
A、11 B、22 C、26 D、33
6、 比較
7、 計(jì)算:
8、 計(jì)算:(2+1)(22+1)(24+1)(28+1)(2 16+1)(232+1).xkb1.com
9、 計(jì)算:
10、計(jì)算
11、計(jì)算1+3+5+7++1997+1999的值
12、計(jì)算 1+5+52+53++599+5100的值.
13、有理數(shù) 均不為0,且 設(shè) 試求代數(shù)式 20xx之值。
14、已知a、b、c為實(shí)數(shù),且 ,求 的值。
15、已知: 。
16、解方程組 。
17、若a、b、c為整數(shù),且 ,求 的值。
有理數(shù)教案11
教學(xué)目標(biāo)
1.知識(shí)與技能
、俳(jīng)歷探索有理數(shù)乘法法則的過(guò)程,發(fā)展觀察、歸納、猜想、驗(yàn)證的能力.
、跁(huì)進(jìn)行有理數(shù)的乘法運(yùn)算.
2.過(guò)程與方法
通過(guò)對(duì)問(wèn)題的變式探索,培養(yǎng)觀察、分析、抽象的能力.
3.情感、態(tài)度與價(jià)值觀
通過(guò)觀察、歸納、類比、推斷獲得數(shù)學(xué)猜想,體驗(yàn)數(shù)學(xué)活動(dòng)中的探索性和創(chuàng)造性.
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn):能按有理數(shù)乘法法則進(jìn)行有理數(shù)乘法運(yùn)算.
難點(diǎn):含有負(fù)因數(shù)的乘法.
教與學(xué)互動(dòng)設(shè)計(jì)
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
做一做 出示一組算式,請(qǐng)同學(xué)們用計(jì)算器計(jì)算并找出它們的規(guī)律.
例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________
(3)(-5)(+3)=________;(4)(-5)(-3)=________
例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________
(3)(-6)(+4)=________;(4)(-6)(-4)=________
(二)合作交流,解讀探究
想一想 你們發(fā)現(xiàn)積的符號(hào)與因數(shù)的符號(hào)之間的關(guān)系如何?
學(xué)生活動(dòng):計(jì)算、討論
總結(jié) 一正一負(fù)的兩個(gè)數(shù)的乘積為負(fù);兩正或兩負(fù)的.乘積是正數(shù).
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù).
想一想 兩數(shù)相乘,積的絕對(duì)值是怎么得到的呢?
學(xué)生:是兩因數(shù)的絕對(duì)值的積.
有理數(shù)教案12
教學(xué)目標(biāo):
1、知識(shí)與技能: 理解有理數(shù)加法的運(yùn)算律,能熟練地運(yùn)用運(yùn)算律簡(jiǎn)化有理數(shù)加法的運(yùn)算,能靈活運(yùn)用有理數(shù)的加法解決簡(jiǎn)單實(shí)際問(wèn)題。
2、過(guò)程與方法: 經(jīng)過(guò)有理數(shù)加法運(yùn)算律的探索過(guò)程,了解加法的運(yùn)算律,能用運(yùn)算律簡(jiǎn)化運(yùn)算。
重點(diǎn)、難點(diǎn):
1、重點(diǎn):運(yùn)算律的理解及合理、靈活的運(yùn)用。
2、難點(diǎn):合理運(yùn)用運(yùn)算律。
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情景,導(dǎo)入新課
1、敘述有理數(shù)的加法法則。
2、有理數(shù)加法與小學(xué)里學(xué)過(guò)的數(shù)的加法有什么區(qū)別和聯(lián)系?
答:進(jìn)行有理數(shù)加法運(yùn)算,先要根據(jù)具體情況正確地選用法則,確定和的符號(hào),這與小學(xué)里學(xué)過(guò)的.數(shù)的加法是不同的;而計(jì)算和的絕對(duì)值,用的是小學(xué)里學(xué)過(guò)的加法或減法運(yùn)算。
二、合作交流,解讀探究
1、計(jì)算下列各題,并說(shuō)明是根據(jù)哪一條運(yùn)算法則?
(1) (-9.18)+6.18; (2) 6.18+(-9.18); (3) (-2.37)+(-4.63)
2、計(jì)算下列各題:
(1) +(-4); (2) 8+;
(3) +(-11); (4) (-7)+;
(5) +(+27); (6) (-22)+.
通過(guò)上面練習(xí),引導(dǎo)學(xué)生得出:
交換律兩個(gè)有理數(shù)相加,交換加數(shù)的位置,和不變。
用代數(shù)式表示上面一段話:
a+b=b+a
運(yùn)算律式子中的字母a,b表示任意的一個(gè)有理數(shù),可以是正數(shù),也可以是負(fù)數(shù)或者零.在同一個(gè)式子中,同一個(gè)字母表示同一個(gè)數(shù)。
結(jié)合律三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變.
用代數(shù)式表示上面一段話:
(a+b)+c=a+(b+c)
這里a,b,c表示任意三個(gè)有理數(shù)。
根據(jù)加法交換律和結(jié)合律可以推出:三個(gè)以上的有理數(shù)相加,可以任意交換加數(shù)的位置,也可以先把其中的幾個(gè)數(shù)相加。
三、應(yīng)用遷移,鞏固提高
例(P22例3) 計(jì)算:
(1) 33+(-2)+7+(-8)
(2) 4.375+(-82)+( -4.375)
引導(dǎo)學(xué)生發(fā)現(xiàn),在本例中,把正數(shù)與負(fù)數(shù)分別結(jié)合在一起再相加,有相反數(shù)的先把相反數(shù)相加;能湊整的先湊整;有分母相同的,先把同分母的數(shù)相加,計(jì)算就比較簡(jiǎn)便。
本例先由學(xué)生在筆記本上解答,然后教師根據(jù)學(xué)生解答情況指定幾名學(xué)生板演,并引導(dǎo)學(xué)生發(fā)現(xiàn),簡(jiǎn)化加法運(yùn)算一般是三種方法:首先消去互為相反數(shù)的兩數(shù)(其和為0),同號(hào)結(jié)合或湊整數(shù)。
例2(P23例4)
教師通過(guò)啟發(fā),由學(xué)生列出算式,再讓學(xué)生思考,如何應(yīng)用運(yùn)算律,使計(jì)算簡(jiǎn)便。第一問(wèn)可以讓學(xué)生自已作行程示意圖幫助理解,注意第一問(wèn)和第二問(wèn)的區(qū)別。
練習(xí) 課本P.23練習(xí):1、2
四、總結(jié)反思
本節(jié)課你有哪些收獲?
五、作業(yè)
1、課本P27習(xí)題1.4A組第3、4題
2、課本P28習(xí)題1.4B組第12題
有理數(shù)教案13
一、知識(shí)點(diǎn)回顧
1、掌握有理數(shù)的概念和分類。
2、知道有理數(shù)與數(shù)軸上的點(diǎn)的關(guān)系。掌握數(shù)軸的定義,會(huì)用數(shù)軸上的點(diǎn)表示有理數(shù),理解有理數(shù)的有序性,會(huì)比較兩個(gè)有理數(shù)的大小。
3、利用數(shù)軸理解數(shù)的絕對(duì)值和一對(duì)相反數(shù)的意義。
4、掌握有理數(shù)的運(yùn)算法則。
5、有理數(shù)的乘方。了解底數(shù)、指數(shù)、冪等概念。
6、掌握有理數(shù)的運(yùn)算律。
7、熟練進(jìn)行有理數(shù)的混合運(yùn)算。運(yùn)算時(shí)可合理運(yùn)用運(yùn)算律,使運(yùn)算簡(jiǎn)便。
8、掌握科學(xué)計(jì)數(shù)法。
二、典型例題分析
1、計(jì)算
。1)、 (2)、(- 2 )+ 1 + 1 + (- 5 )
。3)、-150(- )-250.125+50(- ) (4)、(+3 )(3 -7 ) (5)、3 (- )-(- )2 - (- )
。6)- ( + - )
(7)、{1+[ -(- )](-2)}(- - -0.05)
(8)、
(9)、
(10)、
(11)、已知|x|= ,|y|= ,且xy0,求代數(shù)式5x+7y-9的值。
。12)、
。13)、
。14)、已知 的值。
2、實(shí)數(shù) 在數(shù)軸上的位置如圖,化簡(jiǎn):
3、已知a、b互為相反數(shù),c、d互為倒數(shù),求 的值;
4、已知有理數(shù)a、b、c滿足 + + = -1 求 的值。
5、用計(jì)算器計(jì)算下列各式,并將結(jié)果填寫在橫線上。
①1715873=
、2715873=
、3715873=
、4715873=
⑴你發(fā)現(xiàn)了什么規(guī)律?把你發(fā)現(xiàn)的規(guī)律用簡(jiǎn)練的語(yǔ)言寫出來(lái);
、撇挥糜(jì)算器,請(qǐng)你直接寫出9715873的結(jié)果。
6、任意寫出一個(gè)數(shù)3的倍數(shù),把它的各個(gè)數(shù)位上數(shù)字分別立方,再把這些立方數(shù)相加,得到一個(gè)新的數(shù);接著,把這個(gè)新得到的數(shù)的各個(gè)數(shù)位上的數(shù)字分別立方,再把這些立方數(shù)相加,又得到一個(gè)新的數(shù);,如此重復(fù)做下去,你發(fā)現(xiàn)了什么規(guī)律?請(qǐng)借助計(jì)算器進(jìn)行探索。
7、歡歡在一家玩具廠里測(cè)量了20個(gè)底座是圓形玩具的底座直徑,測(cè)得直徑如下(單位 mm):25、 25、 24、 24、 23、 24、 24、 25、 26、 25、 23、 23、 24、 25、 25、 24、 24、 26、 26、 25。 試計(jì)算這20個(gè)玩具的直徑總和以及平均直徑。你能找出比較簡(jiǎn)單的計(jì)算方法嗎?如果請(qǐng)敘述你的方法。
9、一口水井,水面比井口低3m,一只蝸牛從水面沿著井壁往井口爬,第一次往上爬了0.42m ,卻下滑了0.15m;第二次往上爬了0.5m后又往下滑了0.1m;第三次往上爬了0.7m又下滑了0.15m;第四次往上爬了0.75m又下滑0.1m,第五次往上爬了0.55m,沒(méi)有下滑;第六次蝸牛又往上爬了0.48m沒(méi)有下滑,問(wèn)蝸牛有沒(méi)有爬上井口?
有理數(shù)及其運(yùn)算 測(cè)試與練習(xí)部分
一、選擇題
1.下列說(shuō)法中正確的是( )
。ˋ)一個(gè)數(shù)的倒數(shù)必小于這個(gè)數(shù) (B)一個(gè)數(shù)的相反數(shù)必小于這個(gè)數(shù)
。–)一個(gè)數(shù)的立方必大于這個(gè)數(shù)的平方(D)一個(gè)數(shù)的絕對(duì)值必不小于這個(gè)數(shù)
2. 6.07 是( )
。ˋ)17位數(shù) (B)18位數(shù) (C)19位數(shù) (D)20位數(shù)
3.下列各式中正確的是( )
。ˋ) (B)- (C) (D)-
4.兩個(gè)不為零的數(shù)互為相反數(shù),則它們的商為( )
(A)-1 (B)1 (C)0 (D)不能確定
5.10 (n是正整數(shù))表示的數(shù)是( )
。ˋ)10個(gè)n相乘的積 (B)n個(gè)10相乘的積 (C)1后面有n-1個(gè)零
。―)1后面有n+1個(gè)零
6.下列判斷錯(cuò)誤的( )
。ˋ)負(fù)數(shù)的偶次方是正數(shù) (B)有理數(shù)的偶次方是正數(shù)
(C)-1的任何次方的絕對(duì)值都是1 (D)有理數(shù)的偶次方不是負(fù)數(shù)
7.有加法交換律可得,a-b+c=( )
(A)a-c-b (B)c+a-b (C)a-c+b (D)c-a-b
8.如果兩個(gè)有理數(shù)的差是正數(shù),那么這兩個(gè)數(shù)( )
。ˋ)都是正數(shù) (B)都不是正數(shù) (C)不都是正數(shù) (D)以上都可能
9.計(jì)算(-2) +(-2) 所得結(jié)果是( )
(A)2 (B)-1 (C)-2 (D)-2
10、絕對(duì)值 小于7而大于3的所有整數(shù)的和是 ( )
A、15 B、-15 C、0 D、30
11、若│a │=7 ,b的相反數(shù)是2,則a+b的值是 ( )
A、-9 B、-9或+9 C、+5或-5 D、+5或-9
12、在(-5)-( )= -7中的括號(hào)里應(yīng)填( )
A、-2 B、2 C、-12 D、12
13、下列說(shuō)法中錯(cuò)誤的有( )
①若兩數(shù)的差是正數(shù),則這兩個(gè)數(shù)都是正數(shù)
、谌魞蓚(gè)數(shù)是互為相反數(shù),則它們的差為零
、哿銣p去任何一個(gè)有理數(shù),其差是該數(shù)的相反數(shù)
A、0個(gè) B、1個(gè) C、2個(gè) D、3個(gè)
14、減去一個(gè)正數(shù),差一定 ( ) 被減數(shù)。
A、大于 B、等于 C、小于 D、不能確定誰(shuí)大
15、若M+|-20|=|M|+|20|,則M一定是( )
A、任意一個(gè)有理數(shù) B、任意一個(gè)非負(fù)數(shù)
C、任意一個(gè)非正數(shù) D、任意一個(gè)負(fù)數(shù)
16、兩個(gè)負(fù)數(shù)的和為a,它們的差為b,則a與b的.大小關(guān)系是( )
A、a>b B、a=b C、a<b D、ab
17 、數(shù)m和n,滿足m為正數(shù),n為負(fù)數(shù),則m,m-n,m+n的大小關(guān)系是( )
A、m>m-n>m+n B、m+n>m>m-n
C、m-n>m+n>m D、m-n>m>m+n
18、若 =a+b-c-d, 則 的值是( )
A、4 B、-4 C、10 D、-10
19、計(jì)算:-1.9917的結(jié)果是( )
A、33.83 B、-33.83 C、-32.83 D、-31.83
20、如果兩個(gè)有理數(shù)的積小于零,和大于零,則這兩個(gè)有理數(shù)( )
A、符號(hào)相反 B、符號(hào)相反且負(fù)數(shù)的絕對(duì)值大
C、符號(hào)相反且絕對(duì)值相等 D、符號(hào)相反且正數(shù)的絕對(duì)值大
21、在計(jì)算( - + )(- 36)時(shí),可以避免通分的運(yùn)算律是( )
A、加法交換律 B、分配律 C、乘法交換律 D、加法結(jié)合律
22、定義運(yùn)算:對(duì)于任意兩個(gè)有理數(shù)a、b,有a*b=(a-1)(b+1) 則計(jì)算-3*4的值是( )
A、12 B、-12 C、20 D、-20
23、已知0>a>b,則 與 的大小是( )
A、 > B、 = C、 < D、無(wú)法判定
24、若 = -1,則a是( )
A、正數(shù) B、負(fù)數(shù) C、非正數(shù) D、非負(fù)數(shù)
25、已知a與b互為倒數(shù),m與n互為相反數(shù),則 ab-3m-3n的值是( )
A、-1 B、1 C、- D、
二、填空題
1.減去一個(gè)數(shù),等于加上 ,除以一個(gè)數(shù),等于乘以_______________.
2.用科學(xué)記數(shù)法表示138000000得_____________
3.絕對(duì)值小于4的整數(shù)的積是__________
4.比較大。-0.1 ___________ (-0.1)
5.一個(gè)數(shù)的平方等于它的絕對(duì)值,則這個(gè)數(shù)是____________________
6.列式計(jì)算:3的二次冪與- 的積的相反數(shù)______________________________
7.已知 =4, =3,當(dāng)ab0時(shí),a-b=______________
8、小麗沿著東西方向的道路行走,她先向正東方向走77米,再向正西方向走108 米,最后小麗停在出發(fā)點(diǎn) 方向 米處。
9、當(dāng)x、y 滿足 時(shí),│x│+│y│=│x+y│成立。
10、(- 4 )+( )= -2 ( )-(-6 )=2
11、已知有理數(shù)a.b在數(shù)軸上的對(duì)應(yīng)點(diǎn)位置如圖所示: ? ? ?
b o a
化簡(jiǎn):①│a│-a= ③│a│+│b│=
②│a+b│= ④│b-a│=
12、3.141 +0.314 -31.40.2= 。
13、兩個(gè)有理數(shù)相乘,若把其中一個(gè)因數(shù)換成它的相反數(shù),則所得的積是原來(lái)的積的 。
14、已知3a是一個(gè)負(fù)數(shù),則a是 數(shù)
15、數(shù)b與它的倒數(shù) 相等,則b= 。
16、(1)絕對(duì)值不大于20xx的所有整數(shù)的和是 ,積是 。
17、 的0.12倍等于-14.4
三、解答題
1、- 2、
3.-1.53 4、 -2
5、 6、(- )
7、( - + )(- 63) 8、-150(- )-250.125+50(- )
9、3 (- )-(- )2 - (- )
10、{1+[ -(- )](-2)}(- - -0.05)
11、(1)已知a、b互為相反數(shù),c、d互為倒數(shù),求 的值;
有理數(shù)教案14
教學(xué)目標(biāo)
1、理解掌握有理數(shù)的減法法則,會(huì)將有理數(shù)的減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算;
2、通過(guò)把減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算,向?qū)W生滲透轉(zhuǎn)化思想,通過(guò)有理數(shù)的減法運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力。
3、通過(guò)揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義思想。
教學(xué)建議
(一) 重點(diǎn)、難點(diǎn)分析
本節(jié)重點(diǎn)是運(yùn)用有理數(shù)的減法法則熟練進(jìn)行減法運(yùn)算。解有理數(shù)減法的計(jì)算題需嚴(yán)格掌握兩個(gè)步驟:首先將減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算,然后依據(jù)有理數(shù)加法法則確定所求結(jié)果的符號(hào)和絕對(duì)值。理解有理數(shù)的減法法則是難點(diǎn),突破的關(guān)鍵是轉(zhuǎn)化,變減為加。學(xué)習(xí)中要注意體會(huì):小學(xué)遇到的小數(shù)減大數(shù)不會(huì)減的問(wèn)題解決了,小數(shù)減大數(shù)的差是負(fù)數(shù),在有理數(shù)范圍內(nèi),減法總可以實(shí)施。
。ǘ┲R(shí)結(jié)構(gòu)
。ㄈ┙谭ńㄗh
1、教師指導(dǎo)學(xué)生閱讀教材后強(qiáng)調(diào)指出:由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉(zhuǎn)化為加法。有理數(shù)的加法和減法,當(dāng)引進(jìn)負(fù)數(shù)后就可以統(tǒng)一用加法來(lái)解決。
2、不論減數(shù)是正數(shù)、負(fù)數(shù)或是零,都符合有理數(shù)減法法則。在使用法則時(shí),注意被減數(shù)是永不變的。
3、因?yàn)槿魏螠p法運(yùn)算都可以統(tǒng)一成加法運(yùn)算,所以我們沒(méi)有必要再規(guī)定幾個(gè)帶有減法的運(yùn)算律,這樣有利于知識(shí)的鞏固和記憶。
4、注意引入負(fù)數(shù)后,小的數(shù)減去大的數(shù)就可以進(jìn)行了,其差可用負(fù)數(shù)表示。 教學(xué)設(shè)計(jì)示例
有理數(shù)的減法
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
1、理解掌握有理數(shù)的減法法則。
2、會(huì)進(jìn)行有理數(shù)的減法運(yùn)算。
(二)能力訓(xùn)練點(diǎn)
1、通過(guò)把減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算,向?qū)W生滲透轉(zhuǎn)化思想。
2、通過(guò)有理數(shù)減法法則的推導(dǎo),發(fā)展學(xué)生的邏輯思維能力。
3、通過(guò)有理數(shù)的減法運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力。
。ㄈ┑掠凉B透點(diǎn)
通過(guò)揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義思想。
(四)美育滲透點(diǎn)
在小學(xué)算術(shù)里減法不能永遠(yuǎn)實(shí)施,學(xué)習(xí)了本節(jié)課知道減法在有理數(shù)范圍內(nèi)可以永遠(yuǎn)實(shí)施,體現(xiàn)了知識(shí)體系的完整美。
二、學(xué)法引導(dǎo)
1、教學(xué)方法:教師盡量引導(dǎo)學(xué)生分析、歸納總結(jié),以學(xué)生為主體,師生共同參與教學(xué)活動(dòng)。
2、學(xué)生學(xué)法:探索新知→歸納結(jié)論→練習(xí)鞏固。
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1、重點(diǎn):有理數(shù)減法法則和運(yùn)算。
2、難點(diǎn):有理數(shù)減法法則的推導(dǎo)。
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
電腦、投影儀、自制膠片。
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師提出實(shí)際問(wèn)題,學(xué)生積極參與探索新知,教師出示練習(xí)題,學(xué)生以多種方式討論解決。
七、教學(xué)步驟
。ㄒ唬﹦(chuàng)設(shè)情境,引入新課
1、計(jì)算(口答)(1); (2)-3+(-7);
(3)-10+(+3); (4)+10+(-3)。
2、由實(shí)物投影顯示課本第42頁(yè)本章引言中的畫面,這是北京冬季里的一天,白天的最高氣溫是10℃,夜晚的最低氣溫是-5℃。這一天的最高氣溫比最低氣溫高多少?
教師引導(dǎo)學(xué)生觀察:
生:10℃比-5℃高15℃。
師:能不能列出算式計(jì)算呢?
生:10-(-5)。
師:如何計(jì)算呢?
教師總結(jié):這就是我們今天要學(xué)的內(nèi)容。(引入新課,板書課題)
教法說(shuō)明1題既復(fù)習(xí)鞏固有理數(shù)加法法則,同時(shí)為進(jìn)行有理數(shù)減法運(yùn)算打基礎(chǔ)。2題是一個(gè)具體實(shí)例,教師創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生的認(rèn)知興趣,把具體實(shí)例抽象成數(shù)學(xué)問(wèn)題,從而點(diǎn)明本節(jié)課課題—有理數(shù)的減法。
。ǘ┨剿餍轮,講授新課
1、師:大家知道10-3=7。誰(shuí)能把10-3=7這個(gè)式子中的性質(zhì)符號(hào)補(bǔ)出來(lái)呢?
生:(+10)-(+3)=+7。
師:計(jì)算:(+10)+(-3)得多少呢?
生:(+10)+(-3)=+7。
師:讓學(xué)生觀察兩式結(jié)果,由此得到
師:通過(guò)上述題,同學(xué)們觀察減法是否可以轉(zhuǎn)化為加法計(jì)算呢?生:可以。
師:是如何轉(zhuǎn)化的呢?
生:減去一個(gè)正數(shù)(+3),等于加上它的.相反數(shù)(-3)。
教法說(shuō)明
教師發(fā)揮主導(dǎo)作用,注重學(xué)生的參與意識(shí),充分發(fā)展學(xué)生的思維能力,讓學(xué)生通過(guò)嘗試,自己認(rèn)識(shí)減法可以轉(zhuǎn)化為加法計(jì)算。
2、再看一題,計(jì)算(-10)-(-3)。
教師啟發(fā):要解決這個(gè)問(wèn)題,根據(jù)有理數(shù)減法的意義,這就是要求一個(gè)數(shù)使它與(-3)相加會(huì)得到-10,那么這個(gè)數(shù)是誰(shuí)呢?
生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教師給另外一個(gè)問(wèn)題:計(jì)算(-10)+(+3)。
生:(-10)+(+3)=-7。
教師引導(dǎo)、學(xué)生觀察上述兩題結(jié)果,由此得到:
教師進(jìn)一步引導(dǎo)學(xué)生觀察(2)式;你能得到什么結(jié)論呢?
生:減去一個(gè)負(fù)數(shù)(-3)等于加上它的相反數(shù)(+3)。
教師總結(jié):由(1)、(2)兩式可以看出減法運(yùn)算可以轉(zhuǎn)化成加法運(yùn)算。
教法說(shuō)明
由于學(xué)生剛剛接觸有理數(shù)減法運(yùn)算難度較大,為面向全體,通過(guò)第二個(gè)題給予學(xué)生進(jìn)一步觀察比較的機(jī)會(huì),學(xué)生自己總結(jié)、歸納、思考,此時(shí)學(xué)生的思維活躍,易于充分發(fā)揮學(xué)生的學(xué)習(xí)主動(dòng)性,同時(shí)也培養(yǎng)了學(xué)生分析問(wèn)題的能力,達(dá)到能力培養(yǎng)的目標(biāo)。
師:通過(guò)以上兩個(gè)題目,請(qǐng)同學(xué)們想一想兩個(gè)有理數(shù)相減的法則是什么?學(xué)生活動(dòng):同學(xué)們思考,并要求同桌同學(xué)相到敘述,互相糾正補(bǔ)充,然后舉手回答,其他同學(xué)思考準(zhǔn)備更正或補(bǔ)充。
師:出示有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。(板書)教師強(qiáng)調(diào)法則:
(1)減法轉(zhuǎn)化為加法,減數(shù)要變成相反數(shù)。
(2)法則適用于任何兩有理數(shù)相減。
(3)用字母表示一般形式為:。
教法說(shuō)明
結(jié)合引入新課中溫度計(jì)的實(shí)例,進(jìn)一步驗(yàn)證了有理數(shù)的減法法則的合理性,同時(shí)向?qū)W生指出了有理數(shù)減法的實(shí)際意義。從而使學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于實(shí)際,又服務(wù)于實(shí)際。
3、例題講解:
[出示投影1 (例題1、2)]
例1 計(jì)算(1)(-3)-(-5); (2)0-7;
例2 計(jì)算(1)7.2-(-4.8);(2)()-。
例1是由學(xué)生口述解題過(guò)程,教師板書,強(qiáng)調(diào)解題的規(guī)范性,然后師生共同總結(jié)解題步驟:
(1)轉(zhuǎn)化,
(2)進(jìn)行加法運(yùn)算。
例2兩題由兩個(gè)學(xué)生板演,其他學(xué)生做在練習(xí)本上,然后師生講評(píng)。
教法說(shuō)明學(xué)生口述解題過(guò)程,教師板書做示范,從中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)風(fēng)和良好的學(xué)習(xí)習(xí)慣。例1(2)題是0減去一個(gè)數(shù),學(xué)生在開始學(xué)時(shí)很容易出錯(cuò),這里作為例題是為引起學(xué)生的重視。例2兩題是簡(jiǎn)單的變式題目,意在說(shuō)明有理數(shù)減法法則不但適用于整數(shù),也適用于分?jǐn)?shù)、小數(shù),即有理數(shù)。
師:組織學(xué)生自己編題,學(xué)生回答。
教法說(shuō)明教師與學(xué)生以平等身份參與教學(xué),放手讓學(xué)生自己編擬有理數(shù)減法的題目,其目的是讓學(xué)生鞏固怕學(xué)知識(shí)。這樣做,一方面可以活躍學(xué)生的思維,培養(yǎng)學(xué)生的表達(dá)能力。另一方面通過(guò)出題,相互解答,互相糾正,能增強(qiáng)學(xué)生學(xué)習(xí)的主動(dòng)性和參與意識(shí)。同時(shí),教師可以獲取學(xué)生掌握知識(shí)的反饋信息,對(duì)于存在的問(wèn)題及時(shí)回授。
。ㄈ﹪L試反饋,鞏固練習(xí)
師:下面大家一起看一組題。
。鄢鍪就队2 (計(jì)算題1、2)]
1、計(jì)算(口答)
(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);
(4)(-4)-9 (5)0-(-5); (6)0-5。
2、計(jì)算
(1)(-2.5)-5.9; (2)1.9-(-0.6);
有理數(shù)教案15
一、學(xué)情分析:
1、學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過(guò)非負(fù)有理數(shù)的四則運(yùn)算以及運(yùn)算律。在本章的前面幾節(jié)課中,又學(xué)習(xí)了數(shù)軸、相反數(shù)、絕對(duì)值的有關(guān)概念,并掌握了有理數(shù)的加減運(yùn)算法則及其混和運(yùn)算的方法,學(xué)會(huì)了由運(yùn)算解決簡(jiǎn)單的實(shí)際問(wèn)題,具備了學(xué)習(xí)有理數(shù)乘法的知識(shí)技能基礎(chǔ)。
2、學(xué)生的活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在相關(guān)知識(shí)的學(xué)習(xí)過(guò)程中,學(xué)生已經(jīng)歷了探索加法運(yùn)算法則的活動(dòng),并且通過(guò)觀察"水位的變化",運(yùn)用有理數(shù)的加法法則解決了一些實(shí)際問(wèn)題,從而獲得了較為豐富的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),同時(shí)在以前的學(xué)習(xí)中,學(xué)生曾經(jīng)歷了合作學(xué)習(xí)和探索學(xué)習(xí)的過(guò)程,具有了合作和探索的意識(shí)。
二、 教材分析:
教科書基于學(xué)生已掌握了有理數(shù)加法、減法運(yùn)算法則的基礎(chǔ)上,提出了本節(jié)課的具體學(xué)習(xí)任務(wù):發(fā)現(xiàn)探索有理數(shù)的乘法法則,了解倒數(shù)的概念,會(huì)進(jìn)行有理數(shù)的運(yùn)算。
本節(jié)課的數(shù)學(xué)目標(biāo)是:
。、經(jīng)歷探索有理數(shù)乘法法則的過(guò)程,發(fā)展觀察、歸納、猜想、驗(yàn)證能力;
。、學(xué)會(huì)進(jìn)行有理數(shù)的乘法運(yùn)算,掌握確定多個(gè)不等于零的有理數(shù)相乘的積的.符號(hào)方法以及有一個(gè)數(shù)為零積是零的情況:
三、教學(xué)過(guò)程設(shè)計(jì):
本節(jié)課設(shè)計(jì)了六個(gè)環(huán)節(jié):第一環(huán)節(jié):?jiǎn)栴}情境,引入新課;第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論;第三環(huán)節(jié):驗(yàn)證明確結(jié)論;第四環(huán)節(jié):運(yùn)用鞏固,練習(xí)提高;第五環(huán)節(jié):課堂;第六環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):?jiǎn)栴}情境,引入新課
問(wèn)題:(1)觀察教科書給出的圖片,分析教科書提出的問(wèn)題,弄清題意,明確已知是什么,所求是什么,讓學(xué)生討論思考如何解答。
(2)如果用正號(hào)表示水位上升,用負(fù)號(hào)表示水位下降,討論四天后,甲水庫(kù)水位的變化量的表示法和乙水庫(kù)水位變化量的表示法。
設(shè)計(jì)意圖:培養(yǎng)學(xué)生從圖形語(yǔ)言和文字語(yǔ)言中獲取信息的能力,感受用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,體驗(yàn)算法多樣化,并從第二種算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)從而引出課題:有理數(shù)的乘法。
第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論
問(wèn)題:(1)由課題引入中知道:4個(gè)-3相加等于-12,可以寫成算式
。ǎ场粒矗剑保玻敲聪铝幸唤M算式的結(jié)果應(yīng)該如何計(jì)算?請(qǐng)同學(xué)們思考:
。ǎ常粒常剑撸撸撸撸;
(-3)×2=_____;
。ǎ常粒保剑撸撸撸撸;
。ǎ常粒埃剑撸撸撸撸。
。ǎ玻┊(dāng)同學(xué)們寫出結(jié)果并說(shuō)明道理時(shí),讓學(xué)生通過(guò)觀察這組算式等號(hào)兩邊的特點(diǎn)去發(fā)現(xiàn)積的變化規(guī)律,然后再出示一組算式猜想其積的結(jié)果:
(-3)×(-1)=_____;
。ǎ常粒ǎ玻剑撸撸撸撸;
(-3)×(-3)=_____;
。ǎ常粒ǎ矗剑撸撸撸撸。
教前設(shè)計(jì)意圖:以算式求解和探究問(wèn)題的形式引導(dǎo)學(xué)生逐步深入的觀察思考,從負(fù)數(shù)與非負(fù)數(shù)相乘的一組算式中發(fā)現(xiàn)規(guī)律后,猜想負(fù)數(shù)與負(fù)數(shù)相乘的積是多少,通過(guò)對(duì)兩組算式的觀察,歸納,概括出有理數(shù)的乘法法則,并用語(yǔ)言表述之,以培養(yǎng)學(xué)生的觀察能力,猜想能力,抽象能力和表述能力。
教后反思事項(xiàng):(1)本環(huán)節(jié)的設(shè)計(jì)理念是學(xué)生通過(guò)觀察思考,親身經(jīng)歷感受乘法法則的發(fā)現(xiàn)過(guò)程,并在合作交流中互相補(bǔ)充,完善結(jié)論。但在實(shí)際過(guò)程中,學(xué)生對(duì)結(jié)論的表述有困難,或者表達(dá)不準(zhǔn)確,不全面,對(duì)于這些問(wèn)題,不能求全責(zé)備,而應(yīng)循循善誘,順勢(shì)引導(dǎo),幫助學(xué)生盡可能簡(jiǎn)練準(zhǔn)確的表述,也不要擔(dān)心時(shí)間不足而代替學(xué)生直接表述法則。
。ǎ玻┱故緝山M算式時(shí),注意板書藝術(shù),把算式豎排,并對(duì)齊書寫,這樣易于學(xué)生觀察特點(diǎn),發(fā)現(xiàn)規(guī)律。
第三環(huán)節(jié):驗(yàn)證明確結(jié)論
問(wèn)題:針對(duì)上一環(huán)節(jié)探究發(fā)現(xiàn)的有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘,任何數(shù)與零相乘,積仍為零。進(jìn)行驗(yàn)證活動(dòng),出示一組算式由學(xué)生完成。
。础粒ǎ矗剑撸撸撸撸;
4×(-3)=_____;
4×(-2)=_____;
。础粒ǎ保剑撸撸撸撸撸
。ā矗粒埃剑撸撸撸撸撸
。ā矗粒保剑撸撸撸撸;
(—4)×2=_____;
。ā矗粒ǎ保剑撸撸撸撸;
。ā矗粒ǎ玻剑撸撸撸撸。
教前設(shè)計(jì)意圖:這個(gè)環(huán)節(jié)的設(shè)計(jì)一方面是因?yàn)樗呛锨橥评淼谋匾h(huán)節(jié),另一方面是為了讓學(xué)生知道從特例歸納得到的結(jié)論不一定適合
一般情況,所以要加以驗(yàn)證和證明它的正確性。同時(shí),驗(yàn)證的過(guò)程本身就是對(duì)有理數(shù)乘法法則的練習(xí)和熟悉過(guò)程。
教后反思事項(xiàng):(1)教科書中沒(méi)有這個(gè)環(huán)節(jié)的要求,但在教學(xué)中應(yīng)該設(shè)計(jì)這個(gè)環(huán)節(jié),確實(shí)讓學(xué)生體驗(yàn)經(jīng)歷驗(yàn)證過(guò)程。
。ǎ玻┍经h(huán)節(jié)的重點(diǎn)是驗(yàn)證乘法法則的正確性而不是運(yùn)用乘法法則計(jì)算。所以在驗(yàn)證過(guò)程中,既要用乘法法則計(jì)算,又要加法法則計(jì)算,真正體現(xiàn)驗(yàn)證的作用和過(guò)程。
(3)在用乘法法則計(jì)算時(shí),要注意其運(yùn)算步驟與加法運(yùn)算一樣,都是先確定結(jié)果的符號(hào),再進(jìn)行絕對(duì)值的運(yùn)算。另外還應(yīng)注意:法則中的“同號(hào)得正,異號(hào)得負(fù)”是專指“兩數(shù)相乘而言的,”不可以運(yùn)用到加法運(yùn)算中去。
第四環(huán)節(jié):運(yùn)用鞏固,練習(xí)提高
活動(dòng)內(nèi)容:
。ǎ保。計(jì)算:
⑴(-4)×5; ⑵(5-)×(-7);
、牵ǎ3÷8)×(-8÷3);⑷(-3)×(-1÷3);
(2)2。計(jì)算:
、牛ǎ矗粒怠粒ǎ。25); ⑵(-3÷5)×(-5÷6)×(-2);
3!白h一議”:幾個(gè)有理數(shù)相乘,因數(shù)都不為零時(shí),積的符號(hào)怎樣確定?有一個(gè)因數(shù)為零時(shí),積是多少?
(4)計(jì)算:
、牛ǎ8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);
、2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;
、5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前設(shè)計(jì)意圖:對(duì)有理數(shù)乘法法則的鞏固和運(yùn)用,練習(xí)和提高.
教后反思事項(xiàng):(1)學(xué)生先自主嘗試解決,全班交流,教師點(diǎn)撥要注意格式規(guī)范,一開始對(duì)每一步運(yùn)算應(yīng)注明理由,運(yùn)算熟練后,可不要求書寫每一步的理由;
。2)例2講解之后,要啟發(fā)學(xué)生完成"議一議"的內(nèi)容,鼓勵(lì)學(xué)生通過(guò)對(duì)例2的運(yùn)算結(jié)果觀察分析,用自己的語(yǔ)言表達(dá)所發(fā)現(xiàn)的規(guī)律,學(xué)生有困難時(shí),教師可設(shè)置如下一組算式讓學(xué)生計(jì)算后觀察發(fā)現(xiàn)規(guī)律,而不應(yīng)代替學(xué)生完成這個(gè)任務(wù)。
。ǎ保粒病粒场粒矗剑撸撸撸撸撸
(-1)×(-2)×3×4=_____;
。ǎ保粒ǎ玻粒ǎ常粒矗剑撸撸撸撸;
。ǎ保粒ǎ玻粒ǎ常粒ǎ矗剑撸撸撸撸;
(-1)×(-2)×(-3)×(-4)×0=_____。
通過(guò)對(duì)以上算式的計(jì)算和觀察,學(xué)生不難得出結(jié)論:多個(gè)數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積的符號(hào)為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積的符號(hào)為正。只要有一個(gè)數(shù)為零,積就為零。當(dāng)然這段語(yǔ)言,不需要讓學(xué)習(xí)背誦,只要理解會(huì)用即可。
第五環(huán)節(jié):感悟反思課堂
問(wèn)題
1.本節(jié)課大家學(xué)會(huì)了什么?
2.有理數(shù)乘法法則如何敘述?”
3.有理數(shù)乘法法則的探索采用了什么方法?
4.你的困惑是什么
教前設(shè)計(jì)意圖:培養(yǎng)學(xué)生的口頭表達(dá)能力,提高學(xué)生的參與意識(shí)。激勵(lì)學(xué)生展示自我。
教后反思事項(xiàng):學(xué)生時(shí),可能會(huì)有語(yǔ)言表達(dá)障礙或表達(dá)不流暢,但只要不影響運(yùn)算的正確性,則不必強(qiáng)調(diào)準(zhǔn)確記憶,而應(yīng)鼓勵(lì)學(xué)生大膽發(fā)言,同時(shí)教師可用準(zhǔn)確的語(yǔ)言適時(shí)的加以點(diǎn)撥。
第六環(huán)節(jié):布置作業(yè)
鞏固作業(yè):教科書知識(shí)技能1、2;問(wèn)題解決1;聯(lián)系擴(kuò)廣1
預(yù)習(xí)作業(yè);略
四、教學(xué)反思:
1、設(shè)計(jì)條理的問(wèn)題串,使觀察、猜想、驗(yàn)證水到渠成
2、相信學(xué)生的探索能力。本節(jié)課的內(nèi)容適合學(xué)生探索,只要教師適當(dāng)引導(dǎo),學(xué)生具有能力探索出有理數(shù)的乘法法則的,不需要教師代替,也不能代替。
。、合理使用多媒體教學(xué)手段可以彌補(bǔ)課堂時(shí)間的不足,但絕不能代替必要的板書。
【有理數(shù)教案】相關(guān)文章:
《有理數(shù)的乘法》教案02-26
有理數(shù)乘法教案11-30
有理數(shù)的加法教案07-31
有理數(shù)優(yōu)秀教案09-19
有理數(shù)的減法教案01-01
有理數(shù)的乘方教案07-13
有理數(shù)的加法與減法教案01-28
有理數(shù)的加法教案優(yōu)秀10-12