(優(yōu)選)乘法分配律教學(xué)反思25篇
作為一名到崗不久的老師,我們要有很強(qiáng)的課堂教學(xué)能力,借助教學(xué)反思我們可以拓展自己的教學(xué)方式,快來參考教學(xué)反思是怎么寫的吧!下面是小編整理的乘法分配律教學(xué)反思,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
乘法分配律教學(xué)反思1
、1355+5587=55(13+87)=5513+5587
、8(125+9)=8125+9
③(100-7)25=10025+725
、9947=(100-1)47=10047-1
、35201=35(201-1)
、79125=125(80-1)=12580+1251
⑦79125=125(80-1)=12580-1
、1252532=1258+425
⑨88125=808125
、24335=(245)33=10033
學(xué)生對(duì)于乘法分配律和結(jié)合律極容易混淆,而且符號(hào)容易抄錯(cuò)。針對(duì)這些情況,在教學(xué)中應(yīng)該注意什么呢?
1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點(diǎn),也要同時(shí)注重其內(nèi)涵。
教學(xué)時(shí)我們往往注重等式兩邊的外形特點(diǎn),即a(b+c)=ab+ac缺乏從乘法意義角度的理解。這時(shí)教師可提出為什么兩個(gè)算式是相等的?這里不僅從解題的角度理解,如(2+7)3=23+73是相等的,還有從乘法的意義的角度理解,即左邊表示出3個(gè)9,右邊也表示出3個(gè)9,所以(2+7)3=23+73
2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點(diǎn),多進(jìn)行對(duì)比練習(xí)。
乘法結(jié)合律的特征是幾個(gè)數(shù)連乘,而乘法分配律的'特征是兩個(gè)數(shù)的和乘一個(gè)數(shù)或兩個(gè)積的和。在練習(xí)題中(40+4)25與(404)25這種題學(xué)生特別容易出錯(cuò)。為了更好地掌握,可多進(jìn)行一些對(duì)比練習(xí),如進(jìn)行題組對(duì)比25(8+4)和2584;25125254和25125+258;每組算式有什么特征和區(qū)別?符合什么運(yùn)算定律?應(yīng)用什么運(yùn)算定律可以使計(jì)算簡便?為什么要這樣算?
3、讓學(xué)生進(jìn)行一題多解的練習(xí),加深對(duì)乘法結(jié)合律和乘法分配律的理解
如:12588;10189你能有幾種方法?12588①豎式計(jì)算②125811③125(80+8)④(100+25)88等等。10189①豎式計(jì)算②(100+1)89③101(100-1)④101(80+9)⑤101(90-1)等。對(duì)于不同解法,引導(dǎo)學(xué)生進(jìn)行對(duì)比分析,什么時(shí)候用乘法結(jié)合律簡便?什么時(shí)候用乘法分配律簡便?力爭達(dá)到用簡便計(jì)算法進(jìn)行計(jì)算成為學(xué)生一種自主行為,并能根據(jù)題目的特色靈活選擇適當(dāng)?shù)乃惴ǖ哪康摹?/p>
4、多練
針對(duì)題目多次練習(xí)。練習(xí)時(shí)注意練習(xí)量和時(shí)間的安排。剛開始可以天天練習(xí),過段時(shí)間以后可以一兩天練習(xí)一次,再到一周練習(xí)一次,典型題型課選擇(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。
對(duì)于比較特殊的題目可以間斷性練習(xí),對(duì)優(yōu)生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。
只有在理解的基礎(chǔ)上反復(fù)練習(xí),才能使孩子對(duì)于乘法分配律牢固掌握,我將在反思過程中制定出切實(shí)可行的計(jì)劃,盡快使孩子消化吸收。
乘法分配律教學(xué)反思2
乘法分配律是繼乘法交換律、乘法結(jié)合律之后的新的運(yùn)算定律,在算術(shù)理論中又叫乘法對(duì)加法的分配性質(zhì),由于它不同于乘法交換律和結(jié)合律是單一的運(yùn)算。從某種程度上來說,其抽象程度要高一些,因此,對(duì)學(xué)生而言,難度偏大,如何使學(xué)生掌握得更好,記得更牢?我想學(xué)生自己獲得的知識(shí)要比灌輸?shù)脕淼挠浀酶。因此我在一開始設(shè)計(jì)了一個(gè)購物的情境,讓學(xué)生在一個(gè)寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。在教學(xué)過程中有坡度的讓學(xué)生在不斷的感悟、體驗(yàn)中理乘法分配律,從而自己概括出乘法分配律。我是這樣設(shè)計(jì):
一、讓學(xué)生從生活實(shí)例去理解乘法分配律
一共25個(gè)小組參加植樹活動(dòng),每組里8人負(fù)責(zé)挖坑和種樹,4人負(fù)責(zé)抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個(gè)25,變?yōu)?8+6)個(gè)25更能凸顯出應(yīng)用乘法分配律后帶來的方便,也為乘法分配律的應(yīng)用打下伏筆和基礎(chǔ)。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對(duì)學(xué)生理解帶來的困難。
通過引入解決問題讓學(xué)生得到兩個(gè)算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個(gè)25與4×25+2×25所表示的也是4個(gè)25再加2個(gè)25也就是6個(gè)25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關(guān)系。然后觀察它們之們的形式變化特點(diǎn),兩個(gè)數(shù)的和乘以一個(gè)數(shù)可以寫成兩個(gè)積相加的形式,再捉住因數(shù)的特點(diǎn)進(jìn)行分析。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機(jī)會(huì)
借助對(duì)同一實(shí)際問題的不同解決方法讓學(xué)生體會(huì)乘法分配律的合理性。這是生活中遇到過的,學(xué)生能夠理解兩個(gè)算式表達(dá)的意思,也能順利地解決兩個(gè)算式相等的問題。
二、突破乘法分配律的教學(xué)難點(diǎn)
讓學(xué)生親歷規(guī)律探索形成過程。對(duì)于探索簡潔分配律的過程價(jià)值,絲毫不低于知識(shí)的掌握價(jià)值。既然是“規(guī)律定律”,就是讓學(xué)生親歷規(guī)律形成的科學(xué)過程設(shè)計(jì)中,不著痕跡的讓學(xué)生不斷觀察、比較、猜想、驗(yàn)證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學(xué)思想和方法。
相對(duì)于乘法運(yùn)算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變形的.能力是教學(xué)的難點(diǎn)。為了突破這個(gè)教學(xué)難點(diǎn),從生活中的實(shí)際問題出發(fā),開放引入的情境,一共25個(gè)小組參加植樹活動(dòng),每組里人負(fù)責(zé),人負(fù)責(zé)。一共有多少同學(xué)參加這次植樹活動(dòng)?
學(xué)生主動(dòng)去設(shè)計(jì)、解決,調(diào)動(dòng)學(xué)生的積極性。讓學(xué)生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學(xué)生,發(fā)揮學(xué)生的主體性,通過去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗(yàn)證、完善,驗(yàn)證其內(nèi)在的規(guī)律,從而概括出乘法分配律。讓學(xué)生能自由地利用自己的知識(shí)經(jīng)驗(yàn)、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點(diǎn)的活動(dòng)中。
在學(xué)生已有的知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點(diǎn),從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實(shí)出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗(yàn)。
當(dāng)然,對(duì)乘法分配律的意義還需做到更式形結(jié)合解釋,那就更有利于模型的建立。
乘法分配律教學(xué)反思是必要的,所以老師們一定也要好好地去對(duì)待。不斷的反思,才可以促進(jìn)不斷的進(jìn)步。以上面的文章,希望與各位同行們共同進(jìn)步。
乘法分配律教學(xué)反思3
新課程如春風(fēng)化雨,走進(jìn)了師生的生活。倡導(dǎo)自主探究,關(guān)注有效生成,成為新課程改革永恒的主題。在追求有效的教學(xué)中我作出了以下幾點(diǎn)的嘗試:
1、從具體的問題情境出發(fā),有利于學(xué)生的自主探索
對(duì)于5套運(yùn)動(dòng)服一共多少元,這樣的問題對(duì)于大多數(shù)學(xué)生來說是駕輕就熟的。結(jié)合熟悉的問題情境,便于學(xué)生理解兩種算法間的聯(lián)系與區(qū)別,
為后敘對(duì)乘法分配律的成功探究理好伏筆。最近發(fā)展區(qū)理論告訴我們,只有找準(zhǔn)了學(xué)生的知識(shí)起點(diǎn),才能有效的教學(xué),熟悉的問題情境面向全體學(xué)生,只有全面參與的探究,才是真正的'自主有效的探究。
2、鼓勵(lì)學(xué)生大膽猜想,在驗(yàn)證過程中形成共識(shí)。
數(shù)學(xué)的猜想是在一系列的實(shí)驗(yàn)、觀察、歸納、類比的基礎(chǔ)上獲得的,數(shù)學(xué)活動(dòng)脫離了猜想就會(huì)顯得沒有意義。本課教學(xué)乘法分配律的探究過程分為幾個(gè)層次:
(1)啟發(fā)猜想。在解決實(shí)際問題的基礎(chǔ)上通過比較,引導(dǎo)學(xué)生的發(fā)散性思維,提出猜想。在具體的問題情境中,讓學(xué)生插上想象的翅膀,激起創(chuàng)新的火花。
。2)例舉驗(yàn)證。讓學(xué)生圍繞猜想,以小組探究為主要形式,以獨(dú)立思考例舉算式與合作學(xué)習(xí)有機(jī)結(jié)合,算出得數(shù)發(fā)現(xiàn)兩種算式結(jié)果相等,在相互交流中,形成對(duì)乘法分配律的共識(shí)。在交流、合作中,使學(xué)生真正成為學(xué)習(xí)的主人。
3、設(shè)計(jì)多層次練習(xí),在層層深入中啟迪學(xué)生的智慧
在形成對(duì)乘法分配律的認(rèn)識(shí)后,分幾個(gè)層次運(yùn)用知識(shí)訓(xùn)練,首先是基礎(chǔ)訓(xùn)練,書本55頁第1、2、3題練習(xí)從正的兩個(gè)角度進(jìn)行,使學(xué)生明確乘法分配律是互逆的。從而達(dá)到靈活運(yùn)用真正理解并掌握的目標(biāo)。其次變式練習(xí),我將書本55頁第4題組練習(xí)設(shè)計(jì)成游戲的形式呈現(xiàn),讓學(xué)生在國松的氛圍中,發(fā)現(xiàn)用乘法分配律可使計(jì)算方便。最后拓展延伸啟迪智慧。練習(xí)中再次結(jié)合具體的問題情境,通過觀察與比較體會(huì)到乘法分配律不僅適用于一個(gè)數(shù)兩個(gè)數(shù)的和,也適用于一個(gè)數(shù)乘兩個(gè)數(shù)的差。在這層層深入的練習(xí)中面向了全體學(xué)生,使每個(gè)孩子有所進(jìn)步,有所發(fā)現(xiàn),有所啟迪,有所收獲。
新課改的腳步在前行,新課扆的理念在深入。作為教師只有不斷內(nèi)化新課程理念,才能使自己的教學(xué)面向全體,促使學(xué)生真正的自主探究,成為學(xué)習(xí)的主人。
乘法分配律教學(xué)反思4
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是所有運(yùn)算定律中變化最多的,因此它是學(xué)生最難理解與運(yùn)用的定律。因此我在教學(xué)中讓學(xué)生在不斷的`感悟、體驗(yàn)中理解乘法分配律,從而概括出乘法分配律。
一、在對(duì)本課的教學(xué)目標(biāo)上,我定位在:
(1)從學(xué)生已有生活經(jīng)驗(yàn)出發(fā),通過觀察、類比、歸納、驗(yàn)證、運(yùn)用等方法深化和豐富對(duì)乘法分配律的認(rèn)識(shí)。
。2)滲透“由特殊到一般,再由一般到特殊”的認(rèn)識(shí)事物的方法,培養(yǎng)學(xué)生獨(dú)立自主、主動(dòng)探索、發(fā)現(xiàn)問題,解決問題的能力,提高數(shù)學(xué)的應(yīng)用意識(shí)。
二、在本課教學(xué)過程的設(shè)計(jì)上
我盡量想體現(xiàn)新課標(biāo)的一些理念,注重從實(shí)際出發(fā),把數(shù)學(xué)知識(shí)和實(shí)際生活緊密聯(lián)系起來,讓學(xué)生在體驗(yàn)中學(xué)到知識(shí)。順延之前學(xué)習(xí)乘法交換律和乘法結(jié)合律的情境舉例:利用植樹活動(dòng)情境“一共有25個(gè)小組,每組里4人負(fù)責(zé)挖坑、種樹,2人負(fù)責(zé)抬水、澆水”。提出問題:“一共有多少名同學(xué)參加了這次植樹活動(dòng)”。讓學(xué)生嘗試通過不同的方法得出:
乘法分配律教學(xué)反思5
乘法的分配律學(xué)生在本冊書中是接觸過的。譬如第42頁的應(yīng)用題第7題,其中就滲透了乘法的分配律。在數(shù)學(xué)一課一練上也有過這種類似的形式。以前在講的時(shí)候是從乘法的意義上來幫助學(xué)生理解。
教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運(yùn)算律。這樣的安排,便于學(xué)生經(jīng)歷觀察、分析、比較和根據(jù)的過程。能使學(xué)生在合作交流的過程中,對(duì)簡潔分配律的認(rèn)識(shí)由感性逐步上升到理性。教學(xué)用書上寫道:教學(xué)的重點(diǎn)和關(guān)鍵應(yīng)是引導(dǎo)學(xué)生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。
在教學(xué)時(shí),我是按照如上的步驟進(jìn)行教學(xué)的?墒窃谖乙龑(dǎo)學(xué)生把算式寫成等式的時(shí)候讓學(xué)生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學(xué)生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進(jìn)行聯(lián)系。根本沒有從數(shù)字上面去進(jìn)行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學(xué)生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學(xué)生也還是無法用語言來表達(dá)這一規(guī)律。場面一時(shí)之間很冷,后來我只好直接讓學(xué)生用字母來表示,變化為這樣的形式之后,有很多的學(xué)生都能夠?qū)懗鰜怼?/p>
我不明白這是為什么,時(shí)間我給了,小組也交流了,在小組交流時(shí)我已經(jīng)發(fā)現(xiàn)我們班上的學(xué)生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進(jìn)行表達(dá)。難道是坡度給得不夠嗎?還是平時(shí)的教學(xué)中出現(xiàn)了問題。這些都要一一地去分析。
乘法分配律的意義是用,是為了計(jì)算的簡便。所以,在練習(xí)中我注意讓學(xué)生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74。一定要學(xué)生說清楚括號(hào)中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學(xué)生在完成想想做做第5題的時(shí)候,一大半的學(xué)生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習(xí)時(shí)也是一樣。
今天教學(xué)了運(yùn)算律――乘法分配律,對(duì)于例題的'解決,學(xué)生能列出不同的算式,45x5+65x5和(45+65)x5,通過各自的計(jì)算得出計(jì)算結(jié)果相同,然后把這兩條算式寫成等式45x5+65x5=(45+65)x5,學(xué)生還能用自己的語言表述自己對(duì)等式的理解:45個(gè)5加65個(gè)5也就是(45+65)個(gè)5,然后又讓學(xué)生再仿寫了幾個(gè)算式后讓學(xué)生觀察等式總結(jié)自己的發(fā)現(xiàn),學(xué)生會(huì)用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個(gè)學(xué)生把第3小題填錯(cuò),其實(shí)包括后面的練習(xí)中,把AxC+BxC改寫成(A+B)xC的正確率要比把(A+B)xC改寫成AxC+BxC的正確率高,可能還是學(xué)生受以前:45個(gè)5加65個(gè)5也就是(45+65)個(gè)5的理解方法的限制而沒學(xué)會(huì)用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。想想做做第2題的第3小題74x(21+1)和74x21+74部分學(xué)生沒有發(fā)現(xiàn)它們是相等的,我讓認(rèn)為相等的學(xué)生表述理由,學(xué)生能把算式改寫成74x21+74x1再運(yùn)用乘法分配律變形成74x(21+1),學(xué)生理解后我補(bǔ)充77x99+77=□(□○□)讓學(xué)生填空,完成情況好多了,在拓展練習(xí)時(shí)補(bǔ)充了AxB+B=□(□○□)和AxB+B=□(□○□)讓學(xué)生進(jìn)一步真正理解乘法分配律的意義。但學(xué)生在完成想想做做第5題時(shí),學(xué)生多習(xí)慣列式48x3+48x2來計(jì)算,卻不能靈活運(yùn)用所學(xué)知識(shí)列成(3+2)x48來計(jì)算,雖然運(yùn)用乘法分配律進(jìn)行簡便計(jì)算是下一課的學(xué)習(xí)內(nèi)容,但我也由此反思出我教學(xué)的不足之處,在例題教學(xué)時(shí)只關(guān)注了得出等式,卻忽略了讓學(xué)生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補(bǔ)上了這一點(diǎn)。
乘法分配律教學(xué)反思6
教學(xué)乘法分配律之后,發(fā)現(xiàn)學(xué)生的正確率很低,特別是對(duì)乘法結(jié)合律與乘法分配律極容易混淆。針對(duì)這種情況,在教學(xué)中應(yīng)該注意些什么呢?
1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點(diǎn),也要同時(shí)注重其內(nèi)涵。
教學(xué)中通過解決“一共貼了多少塊瓷磚?”這一問題,結(jié)合具體的生活情景,得到了(6+4)×9=6×9+4×9這一結(jié)果。這時(shí)老師往往注意了等式兩邊的“外形”結(jié)構(gòu)特點(diǎn),即兩數(shù)的和乘一個(gè)數(shù)=兩個(gè)積的和。缺乏從乘法意義角度的理解。這時(shí)教師可提問“為什么兩個(gè)算式是相等的?”這里不僅要從解題思路的角度理解(6+4)×9=6×9+4×9是相等的,還要從乘法的意義的角度理解,即左邊表示10個(gè)9,右邊也表示10個(gè)9,所以(6+4)×9=6×9+4×9。
2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點(diǎn),多進(jìn)行對(duì)比練習(xí)。
乘法結(jié)合律的特征是幾個(gè)數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個(gè)數(shù)或兩個(gè)積的'和。在練習(xí)中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出現(xiàn)錯(cuò)誤。為了學(xué)生更好地掌握可以多進(jìn)行一些對(duì)比練習(xí)。如:進(jìn)行題組對(duì)比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習(xí)中可以提問:每組算是個(gè)有什么特征和區(qū)別?符合什么運(yùn)算定律的特征?應(yīng)用運(yùn)算定律可以使計(jì)算簡便嗎?為什么要這樣算?
3、讓學(xué)生進(jìn)行一題多解的練習(xí),經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學(xué)生對(duì)乘法結(jié)合律與乘法分配律的理解。
如:計(jì)算125×88;101×89你能用幾種方法?125×88①豎式計(jì)算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①豎式計(jì)算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。對(duì)不同的解題方法,引導(dǎo)學(xué)生進(jìn)行對(duì)比分析,什么時(shí)候用乘法結(jié)合律簡便,什么時(shí)候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進(jìn)行間算的條件是不一樣的。乘法分配律適用于連乘的算式,而乘法分配律一般針對(duì)有兩種運(yùn)算的算式。力爭達(dá)到“用簡便算法進(jìn)行計(jì)算”成為學(xué)生的一種自主行為,并能根據(jù)題目的特點(diǎn),靈活選擇適當(dāng)?shù)乃惴ǖ哪康摹?/p>
4、多練。
針對(duì)典型題目多次進(jìn)行練習(xí)。練習(xí)時(shí)注意練習(xí)量和練習(xí)時(shí)間的安排。剛開始可以天天練,過段時(shí)間以后可以過1-2天練習(xí)一次,再到1周練習(xí)一次。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對(duì)于比較特殊的題目可間斷性練習(xí),對(duì)優(yōu)生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等!
乘法分配律教學(xué)反思7
乘法分配律是第三章的教學(xué)難點(diǎn)也是重點(diǎn),
乘法分配律教學(xué)反思。這節(jié)課的設(shè)計(jì)。我是從學(xué)生的生活問題入手,利用學(xué)生感興趣的買奶茶展開。這節(jié)課我力圖將教學(xué)生學(xué)會(huì)知識(shí),變?yōu)橹笇?dǎo)學(xué)生會(huì)學(xué)知識(shí)。通過讓學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個(gè)知識(shí)形成的過程;仡櫿麄(gè)教學(xué)過程,這節(jié)課的亮點(diǎn)主要體現(xiàn)在以下幾個(gè)方面:
一、引入生活問題,激趣探究
在教學(xué)中,我為學(xué)生創(chuàng)設(shè)大量生動(dòng)、具體、鮮活的生活情境,讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情。首先我創(chuàng)設(shè)情景,提出問題:“一共有多少名學(xué)生參加這次植樹活動(dòng)?”,讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個(gè)等式。然后請(qǐng)學(xué)生觀察,這個(gè)等式兩邊的運(yùn)算順序,使學(xué)生初步感知“乘法分配律”。再讓學(xué)生“觀察這個(gè)等式左右兩邊的不同之處”,再次感知“乘法分配律”。同時(shí)利用情景,讓學(xué)生充分的`感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。
二、提供學(xué)生獨(dú)立探究的機(jī)會(huì)
我要求學(xué)生觀察得到的兩個(gè)等式,提出“你有什么發(fā)現(xiàn)?”。此時(shí)學(xué)生對(duì)“乘法分配律”已有了自己的一點(diǎn)點(diǎn)感知,我馬上要求學(xué)生模仿等式,自己再寫幾個(gè)類似的等式。使學(xué)生自己的模仿中,自然而然地完成猜測與驗(yàn)證,形成比較“模糊”的認(rèn)識(shí)。
三、為學(xué)生的學(xué)習(xí)方式的轉(zhuǎn)變創(chuàng)設(shè)了條件
為了讓“改變學(xué)生的學(xué)習(xí)方式,讓學(xué)生進(jìn)行探索性的學(xué)習(xí)”不是一句空話。在這節(jié)課上,我抓住學(xué)生的已有感知,立刻提出“觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎?”。這樣,給學(xué)生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗(yàn)證,辨析與交流的空間,把學(xué)習(xí)的主動(dòng)權(quán)力還給學(xué)生。學(xué)生的學(xué)習(xí)熱情高了,自然激起了探究的火花。學(xué)生的學(xué)習(xí)方式不再是單一的、枯燥的,整個(gè)教學(xué)過程都采用了讓學(xué)生觀察思考、自主探究、合作交流的學(xué)習(xí)方式。我想:只有改變學(xué)習(xí)方式,才能提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
乘法分配律教學(xué)反思8
乘法分配律運(yùn)算法則與之前學(xué)生學(xué)的“交換律與結(jié)合律”相比,難度要高一個(gè)層次。盡管在周末作業(yè)中設(shè)計(jì)了導(dǎo)學(xué),但多數(shù)學(xué)生都反映“自學(xué)有困難”,按照導(dǎo)學(xué)引導(dǎo)也沒能完全弄懂“分配律”的意義。
其實(shí)分配律在筆算乘法中已有運(yùn)用,但這節(jié)課后,我便以未用學(xué)生熟知的筆算入手而后悔著。其實(shí)在三年級(jí)學(xué)乘法筆算時(shí),先用第二個(gè)因數(shù)的十位乘第一個(gè)因數(shù),再用第二個(gè)因數(shù)的個(gè)位乘第一個(gè)因數(shù),最后將兩次乘積相加,運(yùn)用的就是乘法分配律?赡苁孪任乙彩菗(dān)心學(xué)生們的現(xiàn)實(shí)情況:這樣的入手方式不太吸引人,比較枯燥,吸引不了學(xué)生,又擔(dān)憂是否會(huì)將學(xué)生原本認(rèn)為難的`東西與已會(huì)的東西混淆,反而將已有基礎(chǔ)丟失。
于是,摒棄這一入手方式,并果斷放棄學(xué)生們也不太感興趣的數(shù)形結(jié)合,我從學(xué)生理解難點(diǎn)“為什么可以分開又相加”,用“3×a+5×a”開啟他們思維的大門,讓他們由淺入深,明確3個(gè)a加5個(gè)a表示8個(gè)a,為后面的理解作鋪墊。接下來,我設(shè)置了真實(shí)的班級(jí)情境——植樹節(jié),讓孩子們在主題圖上看到了自己忙碌的身影,并提議“明年植樹節(jié)每班增加2名同學(xué)”,并引導(dǎo)他們提問“明年植樹節(jié)一共有多少同學(xué)參加”,同學(xué)們興致勃勃,用了兩種方法解決了問題,并共同分析了兩種不同的方法所表示的都是明年參加植樹的人的總數(shù),從而再對(duì)比、總結(jié)規(guī)律,進(jìn)而進(jìn)行分層練習(xí),讓他們的學(xué)習(xí)不重復(fù)且不斷有挑戰(zhàn)。
整堂課上下來,感覺孩子們很投入,也能在回顧對(duì)比中運(yùn)用分配律,只是計(jì)算還不太熟練,需要通過更多的練習(xí)來鞏固與加強(qiáng)對(duì)分配律的理解。同時(shí),還有部分同學(xué)聽得懂,過后卻是一知半解中,也需要在練習(xí)中過渡并消化新知。
乘法分配律教學(xué)反思9
怎樣才能化解乘法分配律的教學(xué)難點(diǎn),我想,最終還得在情境中體驗(yàn)從乘法的意義上去理解。
于是,我在教學(xué)時(shí)創(chuàng)設(shè)了許多的'生活情境,讓學(xué)生多次的感悟和體驗(yàn),學(xué)生從意義上有了較好地理解,比如:6×12+4×12,可以讓學(xué)生理解成6個(gè)12加4個(gè)12共10個(gè)12,所以可以這樣得出:6×12+4×12=(6+4)×12。
從意義上的理解使學(xué)生最終擺脫了因強(qiáng)記模式而不會(huì)解的題,如:99×99+99,學(xué)生可以輕松地說出99個(gè)99加上1個(gè)99,一共100個(gè)99,99×99+99=100×99=9900。
乘法分配律教學(xué)反思10
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律是四年級(jí)學(xué)習(xí)的重點(diǎn),也是難點(diǎn)之一。也是一節(jié)比較抽象的概念課,教學(xué)時(shí)我根據(jù)教學(xué)內(nèi)容的特點(diǎn),為學(xué)生提供了多種探究方法,激發(fā)了學(xué)生的自主意識(shí)。
上課時(shí),我以輕松愉快的閑聊方式出示我們身邊最熟悉的教學(xué)資源,以教室地面引出長方形面積的計(jì)算,兩種方法解決問題,得出算式:(8+6)×2=8×2+6×2,從上面的觀察與分析中,你能發(fā)現(xiàn)什么規(guī)律?通過觀察算式,尋找規(guī)律。讓學(xué)生在討論中初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個(gè)算式都是相等的?此時(shí),我不是急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗(yàn)證。學(xué)生興趣濃厚,這里既培養(yǎng)了學(xué)生的猜測能力,又培養(yǎng)了學(xué)生驗(yàn)證猜測的能力。從而讓學(xué)生知道乘法分配律給大家計(jì)算帶來的便利。從而感受數(shù)學(xué)的美。
這堂課由具體到抽象,大多需要學(xué)生體驗(yàn)得來,上下來感覺很好,學(xué)生很投入,似乎都掌握了,可在練習(xí)時(shí)還是發(fā)現(xiàn)了一些問題。如:學(xué)生在學(xué)習(xí)時(shí)知道“分別”的意思,也提醒大家注意,但在實(shí)際運(yùn)用中,還是出現(xiàn)了漏乘的現(xiàn)象。針對(duì)這一現(xiàn)象我認(rèn)為在練習(xí)課時(shí)要加以改進(jìn)。注重從學(xué)生的實(shí)際出發(fā),把數(shù)學(xué)知識(shí)和實(shí)際生活緊密聯(lián)系起來,讓學(xué)生在不斷的感悟和體驗(yàn)中學(xué)習(xí)知識(shí)。
乘法分配律在乘法的運(yùn)算定律中是一個(gè)比較難理解的定律,因此在上課前我作了充分的準(zhǔn)備。因?yàn)閷W(xué)生在三年級(jí)時(shí)已經(jīng)學(xué)過求長方形周長的兩種通過一節(jié)課的學(xué)習(xí),學(xué)生對(duì)乘法分配律的大致規(guī)律能理解,也能靈活運(yùn)用,但是要求用語言來歸納或用字母表示乘法分配律的規(guī)律,有部分學(xué)生就感到很為難了。感覺他們只能意會(huì)不能言傳般。課本中關(guān)于乘法分配律只有一個(gè)植樹的例題,但是練習(xí)中有關(guān)乘法分配律的運(yùn)用卻靈活而多變,學(xué)生們應(yīng)用起來有些不知所措,針對(duì)這種現(xiàn)狀,我把乘法分配律的運(yùn)用進(jìn)行了歸類,分別取個(gè)名字,讓學(xué)生能針對(duì)不同的題目能靈活應(yīng)用。
乘法分配律大致上有這樣三類:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要進(jìn)行平均分配,都要和8相乘。不能只把其中一個(gè)數(shù)字與8相乘,這樣不公平,稱不上是平均分配法,學(xué)生印象很深刻,開始還有部分學(xué)生只選擇一個(gè)數(shù)與8相乘,歸納方法后學(xué)生都能正確應(yīng)用了。
二、提取公因數(shù)法。如:25*40+25*60=25*(40+60)解題關(guān)鍵:找準(zhǔn)兩個(gè)乘法式子中公有的因數(shù),提取出公因數(shù)后,剩下的另一個(gè)數(shù)字該相加還是該相減,看符號(hào)就能確定了。
三:拆分法。如:102*45=(100+2)*45=100*45+2*45這類題的關(guān)鍵在于觀察那個(gè)數(shù)字最接近整百數(shù),將它拆分成整百數(shù)加一個(gè)數(shù)或者整百數(shù)減去一個(gè)數(shù),再應(yīng)用懲罰的分配率進(jìn)行簡算。有了歸類,學(xué)生再見到題目就能依據(jù)數(shù)字或運(yùn)算符號(hào)的特征熟練進(jìn)行乘法分配律的簡算了。
以這個(gè)為切入點(diǎn),從而比較順利地引入新課,正好那天是植樹節(jié)所以我又創(chuàng)讓“打比方”成為數(shù)學(xué)課堂的閃光點(diǎn)。
凡是教過小學(xué)數(shù)學(xué)乘法運(yùn)算律的教師都會(huì)體會(huì)到“乘法分配律”是乘法運(yùn)算律中最難掌握的。學(xué)生在做練習(xí)題中錯(cuò)誤最多。所以課前我對(duì)教材進(jìn)行了身隊(duì)深度的剖析和思考。最后想出了用打比方突破課堂難點(diǎn)。雖然我們的“比方”有時(shí)看來似乎有點(diǎn)不恰當(dāng),但是這種比方對(duì)開發(fā)學(xué)生的想象力,推理能力以及拓展思路竟達(dá)到了意想不到的效果。我是這樣做的:
我由解決問題引出乘法分配律的.等式,但我沒有急于給學(xué)生灌注這叫乘法分配率,而是寫下了這樣一個(gè)式子;{姐姐+我}×媽媽=姐姐×媽媽+我×媽媽然后提問:“誰能解釋為什么我這樣寫嗎?思維活躍的學(xué)生馬上就會(huì)回答:“因?yàn)閶寢屖悄愫徒憬愎灿械模阅愫徒憬愣加匈Y格和媽媽在一起!。學(xué)生們的學(xué)習(xí)興趣一下被調(diào)動(dòng)起來了,他們明白了數(shù)學(xué)原來也是通俗易懂的。然后我再讓他們閱讀教材,給這個(gè)看似“不恰當(dāng)”的比方定性為“乘法分配率”。歸納整合為字母算式:(a+b)×c=a×c+b×c,這時(shí)我再此讓學(xué)生展開聯(lián)想,讓他們學(xué)著老金剛怒目在自己身邊和生活中進(jìn)行舉例,學(xué)生很快舉出(上衣+褲子)×人=上衣×人+褲子×人(鉛筆+圓珠筆)×本子=鉛筆×本子+圓珠筆×本子等例子等不是十分貼切,但卻富有情趣,孩子在編例子的同時(shí),其實(shí)已把握了乘法分配律的特征,學(xué)生就不會(huì)出現(xiàn)(a+b)×c=a×c+b的錯(cuò)誤,在生動(dòng)活潑的!按虮确健敝校葞Ыo了學(xué)生體驗(yàn)學(xué)習(xí)的快樂,又讓我們枯燥深?yuàn)W的數(shù)學(xué)概念成為形象而具體的理解形成,這種教法我在教“乘法交換律”時(shí)也用到過,我在結(jié)尾時(shí)把它總結(jié)為“左右搬家”然后講了個(gè)鋪?zhàn)影峒业墓适拢瑢W(xué)生們在津津樂道的故事中,在形象貼切的“打比方”中學(xué)懂了數(shù)學(xué)知識(shí),收到了良好的效果,真正使數(shù)學(xué)課堂貼近生活。
設(shè)了這樣一個(gè)情境“一共有25個(gè)小組參加植樹 乘法分配律在乘法的運(yùn)算定律中是一個(gè)比較難乘法分配律的教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個(gè)定律中的難點(diǎn)。對(duì)于乘法分配律的教學(xué),我沒有把重點(diǎn)放在數(shù)學(xué)語言的表達(dá)上,而是把重點(diǎn)放在讓學(xué)生通過多種方法的計(jì)算去完整地感知,對(duì)所列算式進(jìn)行觀察、比較和歸納,大膽提出自己的猜想并舉例進(jìn)行驗(yàn)證。
以學(xué)生身邊熟悉的情境為教學(xué)的切入點(diǎn),激發(fā)學(xué)生主動(dòng)學(xué)習(xí)的需要,提出問題:共有多少名同學(xué)參加了這次植樹活動(dòng)?通過兩種方法和算式的比較,使學(xué)生初步感知乘法分配律。
展示知識(shí)的發(fā)生過程,引導(dǎo)學(xué)生積極主動(dòng)探究。先讓學(xué)生根據(jù)問題,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個(gè)等式,讓學(xué)生觀察,初步感知“乘法分配律”。然后要求學(xué)生照樣子說出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律。這樣學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個(gè)知識(shí)形成過程。不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,而且培養(yǎng)學(xué)生主動(dòng)探究、發(fā)現(xiàn)知識(shí)的能力。
最后讓學(xué)生比較乘法交換律和結(jié)合律與分配率的最大區(qū)別,前者只在連乘的同一級(jí)運(yùn)算中運(yùn)用,后者是在兩級(jí)運(yùn)算中運(yùn)用,所以,看清題目是一級(jí)運(yùn)算還是兩級(jí)運(yùn)算對(duì)決定算法非常重要。這節(jié)課雖然成功引導(dǎo)學(xué)生發(fā)現(xiàn)了定律,但教完之后,在練習(xí)過程中還有部分學(xué)生掌握不好,在后一階段依然要加強(qiáng)練習(xí),邊練習(xí)邊總結(jié)算法,使學(xué)生達(dá)到熟能生巧的程度。
乘法分配律教學(xué)反思11
這節(jié)課是在學(xué)生學(xué)習(xí)乘法分配律基礎(chǔ)上進(jìn)行教學(xué)的。在第一課時(shí)學(xué)生對(duì)于乘法分配律的意義已經(jīng)有了初步的理解,對(duì)于乘法分配律的結(jié)構(gòu)也有了一定的認(rèn)識(shí),能初步利用乘法分配律進(jìn)行簡便計(jì)算。本課內(nèi)容的教學(xué)重點(diǎn)是靈活根據(jù)題型應(yīng)用乘法分配律進(jìn)行簡便計(jì)算。
成功之處:
1.課始通過復(fù)習(xí)乘法分配律的意義,以及應(yīng)用乘法分配律進(jìn)行填空的練習(xí),讓學(xué)生進(jìn)一步熟悉乘法分配律的結(jié)構(gòu)及特點(diǎn),加深對(duì)乘法分配律意義的理解。
2.分類型進(jìn)行練習(xí)。采用邊講邊練相結(jié)合的方法,讓學(xué)生通過專項(xiàng)練習(xí)進(jìn)一步鞏固每一類型題目。共分為四類:第一類是a×(b+c);
第二類是a×b+a×c;第三類是a×b+a;第四類是接近整十整百的數(shù)乘一個(gè)數(shù)。整體教學(xué)就是穩(wěn)扎穩(wěn)打,一步一個(gè)腳印,讓所有學(xué)生都能掌握其中的變式練習(xí),然后再進(jìn)行綜合訓(xùn)練,讓學(xué)生靈活解決問題。
不足之處:
1.由于分類型講解練習(xí),導(dǎo)致時(shí)間分配不足,個(gè)別題型沒有足夠的'時(shí)間進(jìn)行練習(xí)。
2.學(xué)生的注意力集中不夠,導(dǎo)致個(gè)別學(xué)生對(duì)某一類型的題目沒有掌握。
再教設(shè)計(jì):
1.加強(qiáng)小組合作的學(xué)習(xí),能自己解決的問題,就自己解決,能小組解決的問題,就小組解決,充分發(fā)揮小組組際間的交流,留給學(xué)生更多的時(shí)間和空間,發(fā)揮學(xué)生主體作用。
2.抓住易出錯(cuò)類型題,重點(diǎn)講解,重點(diǎn)訓(xùn)練。
乘法分配律教學(xué)反思12
= 6×25 = 100 + 50
= 150(元)= 150(元)
此時(shí),讓學(xué)生觀察通過計(jì)算方法得到了相同的結(jié)果,這兩個(gè)算式可用“=”連接。使之讓學(xué)生從中感受了乘法分配律的模型。從而引出乘法分配律的概念:“兩個(gè)數(shù)的和同一個(gè)數(shù)相乘,可以把兩個(gè)加數(shù)分別同這個(gè)數(shù)相乘,再把兩個(gè)積相加,結(jié)果不變!庇米帜感问奖硎荆
。╝ + b)× c = a × c + b × c
三、在本節(jié)課的練習(xí)設(shè)計(jì)上,我力求有針對(duì)性、有坡度的知識(shí)延伸。
1、在完成課本36頁做一做時(shí),對(duì)應(yīng)這3道判斷題,
(1)、判斷56×(19+28)=56×19+28,讓學(xué)生感知到乘法分配律要分給括號(hào)里的每一個(gè)數(shù),強(qiáng)調(diào)乘法分配律的“公平性”。
。2)、判斷32×(7×3)=32×7+32×3,讓學(xué)生注意到乘法結(jié)合律和乘法分配律的區(qū)別:通過對(duì)運(yùn)算定律意義的描述,和算式的特點(diǎn),提煉出最簡潔的.區(qū)分方法:乘法結(jié)合律是連乘情況下的,乘法分配律除了乘法還有加法(后繼教學(xué)還會(huì)出現(xiàn)減法),容易使我們混淆的原因是,它們都是乘法的運(yùn)算定律都有乘法出現(xiàn),更關(guān)鍵是它們都出現(xiàn)了小括號(hào)。
(3)、判斷64×64+36×64,借助64個(gè)64和36個(gè)64,一共是64+36=100個(gè)64,讓學(xué)生理解乘法分配律逆向使用,在一些情況下,計(jì)算會(huì)變得十分簡便。
2、在完成較簡單的課本36頁做一做后,進(jìn)行一些擴(kuò)展型的練習(xí):
通過(250—25)×4,讓學(xué)生感受到,乘法分配律除也可以兩個(gè)數(shù)的差與一個(gè)數(shù)相乘。對(duì)于分配之后,再把兩個(gè)積相減。同時(shí)復(fù)習(xí)強(qiáng)調(diào)我們熟悉的5道重要算式:5×2、25×4、125×8、125×4、25×8
由于本節(jié)課的知識(shí)運(yùn)用的難度較大,學(xué)生對(duì)乘法分配律可以基本掌握,但是對(duì)于其萬般變化,還是有點(diǎn)力不從心,而該運(yùn)算定律對(duì)學(xué)生后繼學(xué)習(xí),尤其是小數(shù)和分?jǐn)?shù)計(jì)算時(shí)有一定影響,所以還需要學(xué)生在本節(jié)課后進(jìn)行深入的學(xué)習(xí),教師也需要針對(duì)乘法分配律的每一種題型,結(jié)合學(xué)生的掌握情況進(jìn)行更系統(tǒng)深入的講解。
乘法分配律教學(xué)反思13
乘法的分配律學(xué)生在本冊書中是接觸過的。譬如第42頁的應(yīng)用題第7題,其中就滲透了乘法的分配律。在數(shù)學(xué)一課一練上也有過這種類似的形式。以前在講的時(shí)候是從乘法的意義上來幫助學(xué)生理解。
一、抓住重點(diǎn)。讓學(xué)生理解乘法分配律的意義。
教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運(yùn)算律。這樣的安排,便于學(xué)生經(jīng)歷觀察、分析、比較和根據(jù)的。過程。能使學(xué)生在合作交流的過程中,對(duì)簡潔分配律的認(rèn)識(shí)由感性逐步上升到理性。教學(xué)用書上寫道:教學(xué)的重點(diǎn)和關(guān)鍵應(yīng)是引導(dǎo)學(xué)生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。
在教學(xué)時(shí),我是按照如上的步驟進(jìn)行教學(xué)的。可是在我引導(dǎo)學(xué)生把算式寫成等式的時(shí)候讓學(xué)生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學(xué)生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進(jìn)行聯(lián)系。根本沒有從數(shù)字上面去進(jìn)行分析?梢哉f,局限在原先的思維中,而沒有跳出來看。而讓學(xué)生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學(xué)生也還是無法用語言來表達(dá)這一規(guī)律。場面一時(shí)之間很冷,后來我只好直接讓學(xué)生用字母來表示,變化為這樣的形式之后,有很多的學(xué)生都能夠?qū)懗鰜怼?/p>
我不明白這是為什么,時(shí)間我給了,小組也交流了,在小組交流時(shí)我已經(jīng)發(fā)現(xiàn)我們班上的學(xué)生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進(jìn)行表達(dá)。難道是坡度給得不夠嗎?還是平時(shí)的教學(xué)中出現(xiàn)了問題。這些都要一一地去分析。
總之,這個(gè)關(guān)鍵今天并沒有完成好。
二、考慮學(xué)生的學(xué)習(xí)情況,尊重他們的主觀感受。
三、練習(xí)中注意乘法分配律的變式。
乘法分配律的意義是用,是為了計(jì)算的簡便。所以,在練習(xí)中我注意讓學(xué)生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74.一定要學(xué)生說清楚括號(hào)中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學(xué)生在完成想想做做第5題的時(shí)候,一大半的'學(xué)生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習(xí)時(shí)也是一樣。
今天教學(xué)了運(yùn)算律——乘法分配律,對(duì)于例題的解決,學(xué)生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計(jì)算得出計(jì)算結(jié)果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學(xué)生還能用自己的語言表述自己對(duì)等式的理解:45個(gè)5加65個(gè)5也就是(45+65)個(gè)5,然后又讓學(xué)生再仿寫了幾個(gè)算式后讓學(xué)生觀察等式總結(jié)自己的發(fā)現(xiàn),學(xué)生會(huì)用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個(gè)學(xué)生把第3小題填錯(cuò),其實(shí)包括后面的練習(xí)中,把A*C+B*C改寫成(A+B)*C的正確率要比把(A+B)*C改寫成A*C+B*C的正確率高,可能還是學(xué)生受以前:45個(gè)5加65個(gè)5也就是(45+65)個(gè)5的理解方法的限制而沒學(xué)會(huì)用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。想想做做第2題的第3小題74*(21+1)和74*21+74部分學(xué)生沒有發(fā)現(xiàn)它們是相等的,我讓認(rèn)為相等的學(xué)生表述理由,學(xué)生能把算式改寫成74*21+74*1再運(yùn)用乘法分配律變形成74*(21+1),學(xué)生理解后我補(bǔ)充77*99+77=□(□○□)讓學(xué)生填空,完成情況好多了,在拓展練習(xí)時(shí)補(bǔ)充了A*B+B=□(□○□)和A*B+B=□(□○□)讓學(xué)生進(jìn)一步真正理解乘法分配律的意義。但學(xué)生在完成想想做做第5題時(shí),學(xué)生多習(xí)慣列式48*3+48*2來計(jì)算,卻不能靈活運(yùn)用所學(xué)知識(shí)列成(3+2)*48來計(jì)算,雖然運(yùn)用乘法分配律進(jìn)行簡便計(jì)算是下一課的學(xué)習(xí)內(nèi)容,但我也由此反思出我教學(xué)的不足之處,在例題教學(xué)時(shí)只關(guān)注了得出等式,卻忽略了讓學(xué)生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補(bǔ)上了這一點(diǎn)。
乘法分配律教學(xué)反思14
這節(jié)課是在學(xué)生學(xué)習(xí)乘法分配律基礎(chǔ)上進(jìn)行教學(xué)的。在第一課時(shí)學(xué)生對(duì)于乘法分配律的意義已經(jīng)有了初步的理解,對(duì)于乘法分配律的結(jié)構(gòu)也有了一定的認(rèn)識(shí),能初步利用乘法分配律進(jìn)行簡便計(jì)算。本課內(nèi)容的.教學(xué)重點(diǎn)是靈活根據(jù)題型應(yīng)用乘法分配律進(jìn)行簡便計(jì)算。
成功之處:
1.課始通過復(fù)習(xí)乘法分配律的意義,以及應(yīng)用乘法分配律進(jìn)行填空的練習(xí),讓學(xué)生進(jìn)一步熟悉乘法分配律的結(jié)構(gòu)及特點(diǎn),加深對(duì)乘法分配律意義的理解。
2.分類型進(jìn)行練習(xí)。采用邊講邊練相結(jié)合的方法,讓學(xué)生通過專項(xiàng)練習(xí)進(jìn)一步鞏固每一類型題目。共分為四類:第一類是a×(b+c);
第二類是a×b+a×c;第三類是a×b+a;第四類是接近整十整百的數(shù)乘一個(gè)數(shù)。整體教學(xué)就是穩(wěn)扎穩(wěn)打,一步一個(gè)腳印,讓所有學(xué)生都能掌握其中的變式練習(xí),然后再進(jìn)行綜合訓(xùn)練,讓學(xué)生靈活解決問題。
不足之處:
1.由于分類型講解練習(xí),導(dǎo)致時(shí)間分配不足,個(gè)別題型沒有足夠的時(shí)間進(jìn)行練習(xí)。
2.學(xué)生的注意力集中不夠,導(dǎo)致個(gè)別學(xué)生對(duì)某一類型的題目沒有掌握。
再教設(shè)計(jì):
1.加強(qiáng)小組合作的學(xué)習(xí),能自己解決的問題,就自己解決,能小組解決的問題,就小組解決,充分發(fā)揮小組組際間的交流,留給學(xué)生更多的時(shí)間和空間,發(fā)揮學(xué)生主體作用。
2.抓住易出錯(cuò)類型題,重點(diǎn)講解,重點(diǎn)訓(xùn)練。
乘法分配律教學(xué)反思15
乘法分配律教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上進(jìn)行的。它是學(xué)生較難理解與敘述的定律。因此我在教學(xué)中讓學(xué)生在不斷的感悟、體驗(yàn)、練習(xí)中理解乘法分配律,從而達(dá)到熟練掌握的效果。
一、從學(xué)生已有生活經(jīng)驗(yàn)出發(fā),通過觀察、類比、歸納、驗(yàn)證、運(yùn)用等方法深化和豐富對(duì)乘法分配律的認(rèn)識(shí)。滲透“由特殊到一般,再由一般到特殊”的認(rèn)識(shí)事物的方法,培養(yǎng)學(xué)生獨(dú)立自主、主動(dòng)探索、發(fā)現(xiàn)問題,解決問題的能力,提高數(shù)學(xué)的應(yīng)用意識(shí)。
二、在本課教學(xué)過程的設(shè)計(jì)上,我盡量想體現(xiàn)新課標(biāo)的'一些理念,注重從實(shí)際出發(fā),把數(shù)學(xué)知識(shí)和實(shí)際生活緊密聯(lián)系起來,讓學(xué)生在體驗(yàn)中學(xué)到知識(shí)。舉例:設(shè)計(jì)學(xué)校買書的情景。讓學(xué)生幫助出主意。出示:“一套故事書45元,一套科技書35元,各買3套書。一共需要多少元錢?”讓學(xué)生嘗試通過不同的方法得出:(45+35)×3=80×3=240(元)、45×3+35×3=135+105=240(元)。此時(shí),讓學(xué)生觀察通過計(jì)算方法得到了相同的結(jié)果,這兩個(gè)算式可用“=”連接。使之讓學(xué)生從中感受了乘法分配律的模型。從而引出乘法分配律的概念:“兩個(gè)數(shù)的和同一個(gè)數(shù)相乘,可以把兩個(gè)加數(shù)分別同這個(gè)數(shù)相乘,再把兩個(gè)積相加,結(jié)果不變!庇米帜感问奖硎荆海╝+b)×c=a×c+b×c
本節(jié)課氣氛活躍,學(xué)生積極性高。可通過練習(xí)發(fā)現(xiàn)孩子們掌握得并不如意,在下節(jié)課我將繼續(xù)加強(qiáng)練習(xí)。
乘法分配律教學(xué)反思16
這節(jié)課是在學(xué)生學(xué)習(xí)乘法分配律基礎(chǔ)上進(jìn)行教學(xué)的。在第一課時(shí)學(xué)生對(duì)于乘法分配律的意義已經(jīng)有了初步的理解,對(duì)于乘法分配律的結(jié)構(gòu)也有了一定的認(rèn)識(shí),能初步利用乘法分配律進(jìn)行簡便計(jì)算。本課內(nèi)容的教學(xué)重點(diǎn)是靈活根據(jù)題型應(yīng)用乘法分配律進(jìn)行簡便計(jì)算。
成功之處:
1、課始通過復(fù)習(xí)乘法分配律的意義,以及應(yīng)用乘法分配律進(jìn)行填空的練習(xí),讓學(xué)生進(jìn)一步熟悉乘法分配律的結(jié)構(gòu)及特點(diǎn),加深對(duì)乘法分配律意義的理解。
2、分類型進(jìn)行練習(xí)。采用邊講邊練相結(jié)合的方法,讓學(xué)生通過專項(xiàng)練習(xí)進(jìn)一步鞏固每一類型題目。共分為四類:第一類是a×(b+c);
第二類是a×b+a×c;第三類是a×b+a;第四類是接近整十整百的數(shù)乘一個(gè)數(shù)。整體教學(xué)就是穩(wěn)扎穩(wěn)打,一步一個(gè)腳印,讓所有學(xué)生都能掌握其中的變式練習(xí),然后再進(jìn)行綜合訓(xùn)練,讓學(xué)生靈活解決問題。
不足之處:
1、由于分類型講解練習(xí),導(dǎo)致時(shí)間分配不足,個(gè)別題型沒有足夠的時(shí)間進(jìn)行練習(xí)。
2、學(xué)生的`注意力集中不夠,導(dǎo)致個(gè)別學(xué)生對(duì)某一類型的題目沒有掌握。
再教設(shè)計(jì):
1、加強(qiáng)小組合作的學(xué)習(xí),能自己解決的問題,就自己解決,能小組解決的問題,就小組解決,充分發(fā)揮小組組際間的交流,留給學(xué)生更多的時(shí)間和空間,發(fā)揮學(xué)生主體作用。
2、抓住易出錯(cuò)類型題,重點(diǎn)講解,重點(diǎn)訓(xùn)練。
乘法分配律教學(xué)反思17
乘法分配律是一節(jié)比較抽象的概念課,教師可以根據(jù)教學(xué)內(nèi)容的特點(diǎn),為學(xué)生提供多種探究方法,激發(fā)學(xué)生的自主意識(shí)。
具體是這樣設(shè)計(jì)的:先創(chuàng)設(shè)佳樂超市的'情景調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,通過買“3套運(yùn)動(dòng)服,每件上衣21元,每條褲子10元,一共花多少元?”列出兩種不同的式子,他們確實(shí)能夠體會(huì)到兩個(gè)不同的算式具有相等的關(guān)系。這是第一步:通過資料獲取繼續(xù)研究的信息。(雖然所得的信息很簡單,只是幾組具有相等關(guān)系的算式,但這是學(xué)生通過活動(dòng)自己獲取的,學(xué)生對(duì)于它們感到熟悉和親切,用他們作為繼續(xù)研究的對(duì)象,能夠調(diào)動(dòng)學(xué)生的參與意識(shí)。)
第二步:觀察算式,尋找規(guī)律。讓學(xué)生通過討論初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個(gè)算式都是相等的?此時(shí),教師不要急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗(yàn)證。這里既培養(yǎng)了學(xué)生的猜測能力,又培養(yǎng)了學(xué)生驗(yàn)證猜測的能力。
第三步:應(yīng)用規(guī)律,解決實(shí)際問題。通過對(duì)于實(shí)際問題的解決,進(jìn)一步拓寬乘法分配律。這一階段,既是學(xué)生鞏固和擴(kuò)大知識(shí),又是吸收內(nèi)化知識(shí)的階段,同時(shí)還是開發(fā)學(xué)生創(chuàng)新思維的重要階段。
乘法分配律教學(xué)反思18
“乘法分配律”的學(xué)習(xí)是在學(xué)習(xí)了乘法交換律和乘法結(jié)合律之后進(jìn)行的,對(duì)于乘法分配律的理解和應(yīng)用上都比前兩個(gè)運(yùn)算定律更有難度,學(xué)生在新課學(xué)習(xí)和知識(shí)的應(yīng)用的過程中思路還比較清晰,但是在作業(yè)的過程中出現(xiàn)的好多問題,讓人感覺孩子并沒有對(duì)定律有真正意義上的理解。如:(40+4)×25,有時(shí),只用40×25,后面只加上4就行了,還有的把這道題目改成了連乘題,根據(jù)孩子出現(xiàn)的問題和練習(xí)中出現(xiàn)的困惑,我認(rèn)真的設(shè)計(jì)的這節(jié)練習(xí)課。
第一,理清思路,建構(gòu)完整的'知識(shí)體系。在本節(jié)課中,我和學(xué)生們一起回顧了乘法的幾種運(yùn)算定律,比較每種運(yùn)算定律的字母公式,來區(qū)分乘法交換律、乘法結(jié)合律和乘法分配律之間的外形結(jié)構(gòu)特點(diǎn),引導(dǎo)學(xué)生發(fā)現(xiàn),乘法結(jié)合律是幾個(gè)數(shù)連乘,而乘法分配律是兩數(shù)的和乘一個(gè)數(shù)或者是兩個(gè)積的和。從運(yùn)算符號(hào)上我們很快就可以找到它們的不同。乘法交換律和乘法結(jié)合律都只有乘號(hào),而乘法分配律有不同級(jí)的兩種運(yùn)算符號(hào)。
第二,優(yōu)化練習(xí)題,實(shí)行精練。針對(duì)學(xué)生在乘法分配律學(xué)習(xí)后在理解上的困難,及乘法分配律在練習(xí)形式上的多變,我找出課本、課堂作業(yè)本以及一些課外輔導(dǎo)資料上的乘法分配律的計(jì)算題,把他們進(jìn)行概括總結(jié),把不同類型的乘法分配律的方法進(jìn)行練習(xí),講解。讓學(xué)生對(duì)不同的乘法分配律的解決方法都進(jìn)行嘗試,幫助理解,加深記憶。
第三,一題多法。例如25×44,學(xué)生在利用乘法分配律拆分其中一個(gè)數(shù)據(jù)的時(shí)候,有多種方法,有的學(xué)生把25拆成20+5,有的是拆了40+4,還有的把25×44轉(zhuǎn)化成25×4×11,這些方法都可以,讓學(xué)生分辨出每一種方法所運(yùn)用的運(yùn)算定律,從而加深學(xué)生對(duì)知識(shí)的認(rèn)識(shí)和理解,在此基礎(chǔ)上,選出最佳方案。
乘法分配律的練習(xí)實(shí)在是多種多樣,變幻無窮,要想更好的掌握,關(guān)鍵還是要理解,需多練。
乘法分配律教學(xué)反思19
一、讓學(xué)生從實(shí)質(zhì)上理解乘法分配律
在乘法分配律的教學(xué)中,如果只求形式把握不求實(shí)質(zhì)理解,一方面從認(rèn)識(shí)的角度看是不嚴(yán)謹(jǐn)?shù)模ㄐ问缴系牟煌耆珰w納不一定得出真理),另一方面很容易造成學(xué)生不求甚解、囫圇吞棗的不良認(rèn)知習(xí)慣。如果滿足于從形式上掌握乘法分配律,對(duì)于學(xué)生的后續(xù)發(fā)展也極為不利。因此,在教學(xué)時(shí)先出示了這樣一道例題:一件茄克衫65元,一條褲子35元。王老師買5件茄克衫和5條褲子,一共要花多少元?學(xué)生用了兩種解答方法即:(65+35)×5=65×5+35×5。借助對(duì)同一實(shí)際問題的不同解決方法讓學(xué)生體會(huì)乘法分配律的合理性。
二、突破乘法分配律的教學(xué)難點(diǎn)
相對(duì)于乘法運(yùn)算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變形的.能力是教學(xué)的難點(diǎn)。為了突破教學(xué)難點(diǎn),我設(shè)計(jì)了一系列的練習(xí)。
1、在□里填數(shù)○里填運(yùn)算符號(hào):如(25+45)×4=□○□○□○□……
2、在相等的一組算式后面打“√”:如16×7+24×7(16+24)×7□……
在這一組題目中教者重點(diǎn)評(píng)析了最后一道題:40×50+50×9040×(50+90)□。先讓學(xué)生說說著一題為什么不能打√,再根據(jù)乘法分配律的特征,分別寫出與左右算式相等的式子。通過練習(xí)學(xué)生對(duì)乘法分配律有了進(jìn)一步的認(rèn)識(shí),又讓學(xué)生照上面的樣子寫出的幾個(gè)這樣的等式,最后歸納出了乘法分配律的字母表示:(a+b)×c=a×c+b×c。
實(shí)際上課堂時(shí)學(xué)生對(duì)于能否找到反例的活動(dòng)很感興趣,可以嘗試讓學(xué)生也提幾個(gè)反例,經(jīng)過討論逐個(gè)否決,在這樣的過程中,學(xué)生的等式變形能力能夠得到很大提高,有益于加深對(duì)乘法分配律的認(rèn)識(shí)。
乘法分配律教學(xué)反思20
教材提供了這樣一個(gè)主體圖:春季里,同學(xué)們開展植樹活動(dòng),一共有25個(gè)小組,每組里4人負(fù)責(zé)挖坑、種樹,2人負(fù)責(zé)抬水、澆樹。需要解決的問題是:一共有多少人參加植樹活動(dòng)?學(xué)生會(huì)用兩種不同的方法分別列出算式,接著通過計(jì)算發(fā)現(xiàn),兩個(gè)算式可以用=連接,即25(4+2)=254+252,從而通過比較等號(hào)兩邊兩個(gè)算式的不同與相同,概括出乘法分配律。當(dāng)我在一個(gè)班按照此教學(xué)設(shè)計(jì)教學(xué)后,我發(fā)現(xiàn)效果并不理想,表現(xiàn)有兩點(diǎn):
、儆行⿲W(xué)生只是機(jī)械的記憶了乘法分配律的公式,例如看到3544不能想到3540+354;
、谟捎跊]有真正理解乘法分配律的內(nèi)涵,所以完全不能理解其逆應(yīng)用以及當(dāng)兩個(gè)數(shù)的差乘一個(gè)數(shù)時(shí)應(yīng)用乘法分配律。如:他們認(rèn)為6464+3664(64+36)64;265(105-5)=265105-2655。
針對(duì)此情況,我重新設(shè)計(jì)了教案。增加了一個(gè)問題:負(fù)責(zé)挖坑、種樹的同學(xué)比負(fù)責(zé)抬水、澆水的`同學(xué)多多少人?這樣學(xué)生又列出另外兩個(gè)算式,通過計(jì)算后用等號(hào)連接:25(4-2)=254-252,接下來,我引導(dǎo)學(xué)生觀察、對(duì)比兩組算式,充分地去發(fā)現(xiàn)相同點(diǎn)與不同點(diǎn)。這樣一來,促使了學(xué)生去尋找事物之間的聯(lián)系,抓住本質(zhì),尋找共同點(diǎn),促進(jìn)交流,順利地實(shí)現(xiàn)了自我構(gòu)建和知識(shí)創(chuàng)造。學(xué)生的發(fā)現(xiàn)自然也就更豐富、更有深度了:無論是兩個(gè)數(shù)的和還是兩個(gè)數(shù)的差去乘一位數(shù),都可以先把他們與這個(gè)數(shù)分別相乘,再相加或者再相減。此外,我還引導(dǎo)學(xué)生從右到左的觀察等式,嘗試用乘法的意義去理解乘法分配律,即:4個(gè)25加2個(gè)25就等于(4+2)個(gè)25,4個(gè)25減2個(gè)25就等于(4-2)個(gè)25,這樣幫助學(xué)生突破乘法分配律逆應(yīng)用這個(gè)教學(xué)難點(diǎn)。
我通過對(duì)兩個(gè)班不同的教學(xué)設(shè)計(jì),感受到:認(rèn)真鉆研教材,多動(dòng)心思,深入挖掘教材中的寶貴資源,會(huì)使教材的內(nèi)涵更有廣度和深度,也為培養(yǎng)和發(fā)展學(xué)生思維的靈活性,提供了更廣闊的空間。
乘法分配律教學(xué)反思21
乘法分配律是第三章的教學(xué)難點(diǎn)也是重點(diǎn)。這節(jié)課的設(shè)計(jì)。我是從學(xué)生的生活問題入手,利用與生活密切相關(guān)的情境圖植樹問題展開。這節(jié)課我力圖將教學(xué)生學(xué)會(huì)知識(shí),變?yōu)橹笇?dǎo)學(xué)生會(huì)學(xué)知識(shí)。通過讓學(xué)生經(jīng)歷了 “ 觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納 ” 這樣一個(gè)知識(shí)形成的過程;仡櫿麄(gè)教學(xué)過程,這節(jié)課的亮點(diǎn)主要體現(xiàn)在以下幾個(gè)方面:
一、引入生活問題,激趣探究
在教學(xué)中,我為學(xué)生做好新知鋪墊,然后創(chuàng)設(shè)大量生動(dòng)、具體、鮮活的生活情境,讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情。首先我創(chuàng)設(shè)情景,提出問題: “ 一共有多少名學(xué)生參加這次植樹活動(dòng)? ” 。讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)( 4 + 2 ) ×25=4×25 + 2×25 這個(gè)等式。然后請(qǐng)學(xué)生觀察,這個(gè)等式兩邊的運(yùn)算順序,使學(xué)生初步感知 “ 乘法分配律 ” 。再讓學(xué)生 “ 觀察這個(gè)等式左右兩邊的不同之處 ” ,再次感知 “ 乘法分配律 ” 。同時(shí)利用情景,讓學(xué)生充分的.感知 “ 乘法分配律 ” ,為后來 “ 乘法分配律 ” 的探究提供了有力的保障。
二、提供學(xué)生獨(dú)立探究的機(jī)會(huì)
我要求學(xué)生觀察得到的兩個(gè)等式,提出 “ 你有什么發(fā)現(xiàn)? ” 。此時(shí)學(xué)生對(duì) “ 乘法分配律 ” 已有了自己的一點(diǎn)點(diǎn)感知,我馬上要求學(xué)生模仿等式,自己再寫幾個(gè)類似的等式。使學(xué)生自己的模仿中,自然而然地完成猜測與驗(yàn)證,形成比較 “ 模糊 ” 的認(rèn)識(shí)。
三、為學(xué)生的學(xué)習(xí)方式的轉(zhuǎn)變創(chuàng)設(shè)了條件
為了讓 “ 改變學(xué)生的學(xué)習(xí)方式,讓學(xué)生進(jìn)行探索性的學(xué)習(xí) ” 不是一句空話。在這節(jié)課上,我抓住學(xué)生的已有感知,立刻提出 “ 觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎? ” 。這樣,給學(xué)生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗(yàn)證,辨析與交流的空間,把學(xué)習(xí)的主動(dòng)權(quán)力還給學(xué)生。學(xué)生的學(xué)習(xí)熱情高了,自然激起了探究的火花。學(xué)生的學(xué)習(xí)方式不再是單一的、枯燥的,整個(gè)教學(xué)過程都采用了讓學(xué)生觀察思考、自主探究、合作交流的學(xué)習(xí)方式。我想:只有改變學(xué)習(xí)方式,才能提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
乘法分配律教學(xué)反思22
關(guān)于乘法分配律早在上學(xué)期和本冊教材的前幾個(gè)單元的練習(xí)題中就有所滲透,雖然在當(dāng)時(shí)沒有揭示,但學(xué)生已經(jīng)從乘法的意義角度初步進(jìn)行了感知,以及初步體會(huì)了它可以使計(jì)算簡便。今天的教學(xué)就建立在這樣的基礎(chǔ)之上,上午第一節(jié)課我在自己班上,后來第二節(jié)課去聽了一根木頭老師的課,現(xiàn)在進(jìn)行對(duì)比,談一談自己的感受:
首先,值得向一根木頭老師學(xué)習(xí)的是,學(xué)生的預(yù)習(xí)工作很到位。課前,學(xué)生就已經(jīng)解決了“想想做做”第3、4題,學(xué)生通過解決第三題用兩種方法求長方形的.周長,既鞏固了舊知,而且將原來的認(rèn)識(shí)提升了,從解決實(shí)際問題的。角度進(jìn)一步感受了乘法分配律。而第4題通過計(jì)算比較,突現(xiàn)了乘法分配律可以使計(jì)算簡便,體現(xiàn)了應(yīng)用價(jià)值。我在課前沒有安排這樣的預(yù)習(xí),因此課上的時(shí)間比較倉促。
其次,我在學(xué)生解決完例題的問題后,還讓學(xué)生提了減法的問題,這樣做的目的是讓學(xué)生初步感受對(duì)于(a—b)×c=a×b—a×c這種類型的題也同樣適合,既擴(kuò)展了學(xué)生的知識(shí)面,同時(shí)又為明天學(xué)習(xí)簡便運(yùn)算鋪墊。
最后,我覺得在指導(dǎo)學(xué)生在觀察比較65×5+45×5和(65+45)×5的聯(lián)系和區(qū)別時(shí),可以指導(dǎo)學(xué)生從數(shù)和運(yùn)算符號(hào)兩個(gè)角度觀察,學(xué)生得出結(jié)論后,其實(shí)已經(jīng)感知到了算式的特點(diǎn),然后讓學(xué)生用自己的方式創(chuàng)造相同類型的等式,可以是數(shù)、字母、圖形的等,值得欣慰的是學(xué)生能用各種方式正確表示出來,然后再揭示數(shù)學(xué)語言,學(xué)生的認(rèn)知產(chǎn)生飛躍。
不足的是,學(xué)生很難用自己的語言表達(dá)乘法分配律的含義,小組交流時(shí),有些同寫還是充當(dāng)旁觀者的角色,有待于教師科學(xué)地引導(dǎo)。
乘法分配律教學(xué)反思23
1、關(guān)注學(xué)生已有的知識(shí)經(jīng)驗(yàn)
以學(xué)生身邊熟悉的情境為教學(xué)的切入點(diǎn),激發(fā)學(xué)生主動(dòng)學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識(shí)背景密切相關(guān)的感興趣的學(xué)習(xí)情境——為樹勛中心小學(xué)購買舞蹈服裝。通過兩種算式的比較,喚醒了學(xué)生已有的知識(shí)經(jīng)驗(yàn),使學(xué)生初步感知乘法分配律。讓學(xué)生始終處于主動(dòng)探索知識(shí)的最佳狀態(tài),促使學(xué)生對(duì)原有知識(shí)進(jìn)行更新、深化、突破、超越。
2、提供自主探索的機(jī)會(huì)
一堂數(shù)學(xué)課可以有不同種教法,怎樣教才能在數(shù)學(xué)活動(dòng)中培養(yǎng)學(xué)生
的創(chuàng)新能力呢?我覺得,最重要的是保證學(xué)生的主體地位,提供自主探索的機(jī)會(huì)。在探索乘法運(yùn)算律的過程中,提出的問題有易到難,層層遞進(jìn),不僅為學(xué)生提供了自主探索的時(shí)間和空間,使學(xué)生經(jīng)歷乘法運(yùn)算律的產(chǎn)生和形成過程,而且讓學(xué)生發(fā)現(xiàn)其中的數(shù)學(xué)規(guī)律與奧秘,從而激發(fā)學(xué)生對(duì)數(shù)學(xué)深層次的熱愛。
3、展示知識(shí)的發(fā)生過程,引導(dǎo)學(xué)生積極主動(dòng)探究
現(xiàn)代教育觀認(rèn)為:課堂教學(xué)不只是知識(shí)的傳授過程,更是學(xué)生的發(fā)展過程。從數(shù)學(xué)學(xué)科的特點(diǎn)看,學(xué)生所學(xué)的數(shù)學(xué)知識(shí)是前人思維的結(jié)果。學(xué)習(xí)這些知識(shí),不是簡單地吸收,而必須通過自己的思維,把前人的思維結(jié)果轉(zhuǎn)化為自己的思維結(jié)果。教師的任務(wù)是引導(dǎo)和幫助學(xué)生去進(jìn)行再創(chuàng)造,而不是把現(xiàn)成的結(jié)論灌輸給學(xué)生。讓學(xué)生在探索未知領(lǐng)域的過程中,付出與前人發(fā)現(xiàn)這些知識(shí)所曾經(jīng)付出的大體相同的智力代價(jià),從而有效地實(shí)現(xiàn)知識(shí)訓(xùn)練智力的價(jià)值。例如在“乘法分配律”教學(xué)中,我先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65+35)×12=65×12+35×12這個(gè)等式,讓學(xué)生觀察,初步感知“乘法分配律。然后照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己
發(fā)現(xiàn)的規(guī)律、并用不同的方法來表示這個(gè)規(guī)律。這樣學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個(gè)知識(shí)形成過程。不僅要讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,而且讓學(xué)生學(xué)習(xí)科學(xué)探究的方法,以培養(yǎng)學(xué)生主動(dòng)探究、發(fā)現(xiàn)知識(shí)的能力。
4.讓學(xué)生不斷在“反思”中學(xué)習(xí)“體驗(yàn)”中學(xué)習(xí)
建構(gòu)主義強(qiáng)調(diào),學(xué)習(xí)不是簡單地讓學(xué)習(xí)者占有別人的知識(shí),而是學(xué)習(xí)者主動(dòng)地建構(gòu)自己的知識(shí)經(jīng)驗(yàn),形成自己的見解。在學(xué)習(xí)過程中學(xué)習(xí)者不僅要不斷監(jiān)視自己對(duì)知識(shí)的理解程度,判斷自己的進(jìn)展與目標(biāo)的差距,采取各種增進(jìn)和幫助思考的策略,而且還要不斷地反思自己的學(xué)習(xí)過程。由于數(shù)學(xué)對(duì)象的抽象性、數(shù)學(xué)活動(dòng)的探索性決定了小學(xué)生不可能一次性地直接把握數(shù)學(xué)活動(dòng)的本質(zhì),必須要經(jīng)過多次的反復(fù)思考、深入研究和自我調(diào)整才可能洞察數(shù)學(xué)活動(dòng)的本質(zhì)特征。就小學(xué)數(shù)學(xué)課堂教學(xué)而言,反思的內(nèi)容主要有:對(duì)自己的思考過程進(jìn)行反思,對(duì)解題思路、分析過程、運(yùn)算過程、語言的表述進(jìn)行反思,對(duì)所涉及的'數(shù)學(xué)思想方法反思等。在數(shù)學(xué)活動(dòng)中,當(dāng)學(xué)生在探索過程中遇到障礙或出現(xiàn)錯(cuò)誤時(shí),教師可以提出一些針對(duì)性的、具有啟發(fā)性的問題引導(dǎo)學(xué)生主動(dòng)地反思探索過程;當(dāng)數(shù)學(xué)活動(dòng)結(jié)束后,要引導(dǎo)學(xué)生反思整個(gè)探索過程和所獲得結(jié)論的合理性,以獲得成功的體驗(yàn)。在“乘法分配律”教學(xué)中,我先向?qū)W生我先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65+35)×12=65×12+35×12這個(gè)等式,讓學(xué)生觀察,是讓學(xué)生初步感知這個(gè)規(guī)律。同時(shí)也體現(xiàn)了教學(xué)的差異性,給沒有發(fā)現(xiàn)規(guī)律的同學(xué)以再次發(fā)現(xiàn)的機(jī)會(huì)。然后照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律、并用不同的方法來表示這個(gè)規(guī)律,來加深學(xué)生的數(shù)學(xué)體驗(yàn)。又如,學(xué)習(xí)了“乘法分配律”后,教師可讓學(xué)生反思:“乘法分配律”是怎樣總結(jié)出來的?從中你受到了什么啟發(fā)?什么知識(shí)與“乘法分配律”有聯(lián)系?學(xué)了“乘法分配律”后有什么用?這樣既豐富了學(xué)生的數(shù)學(xué)體驗(yàn),又提高了學(xué)生的“反思”的意識(shí)和能力。
本課中注意引導(dǎo)了學(xué)生在數(shù)學(xué)活動(dòng)中體驗(yàn)數(shù)學(xué),在數(shù)學(xué)中感悟數(shù)學(xué),實(shí)現(xiàn)了運(yùn)算律的抽象化與外化運(yùn)用的認(rèn)知飛躍,同時(shí)也體驗(yàn)到了學(xué)習(xí)數(shù)學(xué)的樂趣。
乘法分配律教學(xué)反思24
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律并能初步應(yīng)用這些定律進(jìn)行一些簡便計(jì)算的基礎(chǔ)上進(jìn)行教學(xué)的。乘法分配律是本單元教學(xué)的一個(gè)重點(diǎn),也是本單元內(nèi)容的難點(diǎn),因?yàn)槌朔ǚ峙渎刹皇菃我坏某朔ㄟ\(yùn)算,還涉及到加法的運(yùn)算,是學(xué)生學(xué)習(xí)的難點(diǎn)。因此本節(jié)課不僅使學(xué)生學(xué)會(huì)什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的過程,進(jìn)而培養(yǎng)學(xué)生的分析、推理、抽象、概括的思維能力。
上課時(shí),我以輕松愉快的閑聊方式出示我們身邊最熟悉的教學(xué)資源,以教室地面引出長方形面積的計(jì)算,兩種方法解決問題,得出算式:(8+6)×2=8×2+6×2,從上面的觀察與分析中,你能發(fā)現(xiàn)什么規(guī)律?通過觀察算式,尋找規(guī)律。讓學(xué)生在討論中初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個(gè)算式都是相等的?此時(shí),我不是急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗(yàn)證。學(xué)生興趣濃厚,這里既培養(yǎng)了學(xué)生的猜測能力,又培養(yǎng)了學(xué)生驗(yàn)證猜測的能力。
這堂課由具體到抽象,大多需要學(xué)生體驗(yàn)得來,上下來感覺很好,學(xué)生很投入,似乎都掌握了,可在練習(xí)時(shí)還是發(fā)現(xiàn)了一些問題。如:學(xué)生在學(xué)習(xí)時(shí)知道“分別”的意思,也提醒大家注意,但在實(shí)際運(yùn)用中,還是出現(xiàn)了漏乘的現(xiàn)象。針對(duì)這一現(xiàn)象我認(rèn)為在練習(xí)課時(shí)要加以改進(jìn)。注重從學(xué)生的實(shí)際出發(fā),把數(shù)學(xué)知識(shí)和實(shí)際生活緊密聯(lián)系起來,讓學(xué)生在不斷的感悟和體驗(yàn)中學(xué)習(xí)知識(shí)。乘法分配律在乘法的運(yùn)算定律中是一個(gè)比較難理解的定律,通過這一節(jié)課的.學(xué)習(xí),學(xué)生對(duì)乘法分配律的大致規(guī)律能理解,也能靈活運(yùn)用,但是要求用語言來歸納或用字母表示乘法分配律的規(guī)律,有部分學(xué)生就感到很為難了。感覺他們只能意會(huì)不能言傳。課本中關(guān)于乘法分配律只有一個(gè)求跳繩根數(shù)的例題,但是練習(xí)中有關(guān)乘法分配律的運(yùn)用卻靈活而多變,學(xué)生們應(yīng)用起來有些不知所措,針對(duì)這種現(xiàn)狀,我把乘法分配律的運(yùn)用進(jìn)行了歸類,分別取個(gè)名字,讓學(xué)生能針對(duì)不同的題目能靈活應(yīng)用。
乘法分配律大致上有這樣三類:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要進(jìn)行平均分配,都要和8相乘。不能只把其中一個(gè)數(shù)字與8相乘,這樣不公平,稱不上是平均分配法,學(xué)生印象很深刻,開始還有部分學(xué)生只選擇一個(gè)數(shù)與8相乘,歸納方法后學(xué)生都能正確應(yīng)用了。
二、提取公因數(shù)法。如:25*40+25*60=25*(40+60)解題關(guān)鍵:找準(zhǔn)兩個(gè)乘法式子中公有的因數(shù),提取出公因數(shù)后,剩下的另一個(gè)數(shù)字該相加還是該相減,看符號(hào)就能確定了。
三、拆分法。如:102*45=(100+2)*45=100*45+2*45這類題的關(guān)鍵在于觀察那個(gè)數(shù)字最接近整百數(shù),將它拆分成整百數(shù)加一個(gè)數(shù)或者整百數(shù)減去一個(gè)數(shù),再應(yīng)用乘法的分配率進(jìn)行簡算。有了歸類,學(xué)生再見到題目就能依據(jù)數(shù)字或運(yùn)算符號(hào)的特征熟練進(jìn)行乘法分配律的簡算了。
乘法分配律教學(xué)反思25
《乘法分配律》教學(xué)反思
乘法分配律是一節(jié)概念課,是在學(xué)生已經(jīng)掌握了加法運(yùn)算定律以及乘法交換律、乘法結(jié)合律的基礎(chǔ)上進(jìn)行教學(xué)的。在本單元運(yùn)算定律中,是最難理解的,學(xué)生最不容易掌握的。本節(jié)課的重點(diǎn)是理解乘法分配律的意義,難點(diǎn)是利用乘法分配律靈活地進(jìn)行簡便計(jì)算。
在課堂上,創(chuàng)設(shè)了植樹活動(dòng)的情境,求一共有多少名同學(xué)參加了植樹活動(dòng)。在課堂中,鼓勵(lì)學(xué)生獨(dú)立思考,能用兩種方法解答出來,然后讓學(xué)生對(duì)比兩種算法初步讓學(xué)生感知乘法分配律的意義,即(4+2)×25=428×25+2×25。
在學(xué)生理解了乘法分配律后,運(yùn)用變式練習(xí)加深對(duì)乘法分配律意義的理解,讓學(xué)生不僅知道兩個(gè)數(shù)的和與一個(gè)數(shù)相乘可以寫成兩個(gè)積相加的形式,還要知道兩個(gè)積相加的形式可以寫成兩個(gè)數(shù)的和的形式。也就是乘法分配律也可以反著用。最后通過多種形式的練習(xí)讓學(xué)生深入理解乘法分配律的意義。
通過學(xué)習(xí),一些學(xué)生已掌握,但也有一些學(xué)生的語言敘述不熟練,雖然會(huì)背用字母表示的'式子,但是不會(huì)靈活應(yīng)用。還有一些學(xué)生容易把乘法分配律和乘法結(jié)合律弄混淆。
所以在復(fù)習(xí)鞏固時(shí),要加強(qiáng)乘法結(jié)合律與乘法分配律的對(duì)比,讓學(xué)生對(duì)這兩個(gè)運(yùn)算定律的結(jié)構(gòu)更清晰。還要加強(qiáng)對(duì)乘法分配律意義的理解,通過不同形式的試題的演練,靈活掌握應(yīng)用運(yùn)算定律進(jìn)行簡便計(jì)算。
【乘法分配律教學(xué)反思】相關(guān)文章:
《乘法分配律》教學(xué)反思04-30
乘法分配律教學(xué)反思09-14
《乘法分配律》教學(xué)反思07-28
乘法分配律教學(xué)反思08-28
乘法分配律教學(xué)反思05-06
乘法分配律教學(xué)反思02-10
乘法分配律教學(xué)反思(精選3篇)07-27
《乘法分配律》教學(xué)反思15篇10-29