圓柱的體積教學(xué)反思15篇(優(yōu))
作為一位到崗不久的教師,我們要有一流的課堂教學(xué)能力,通過教學(xué)反思可以有效提升自己的課堂經(jīng)驗,那么你有了解過教學(xué)反思嗎?下面是小編精心整理的圓柱的體積教學(xué)反思,僅供參考,大家一起來看看吧。
圓柱的體積教學(xué)反思1
本課主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因為公式的推導(dǎo)過程是個難點,因此在教學(xué)設(shè)計時,我采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學(xué)生理解公式的來源,從而獲得知識。下面我從教學(xué)過程、教學(xué)策略、教學(xué)技能等方面談?wù)勛约旱囊恍┓此肌?/p>
一、在教學(xué)過程的設(shè)計方面
1、導(dǎo)入時,力求突破教材,有所創(chuàng)新
圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強,不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的`推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、
流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。
2、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)
學(xué)生進行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,我讓學(xué)生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗,,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。
3、練習(xí)時,形式多樣,層層遞進
例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我在設(shè)計練習(xí)時動了一番腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型。
a.已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。
b.已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πr2h。
c.已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2)2h。
d.已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)2h。
e.已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2)2h。
因為是第一課時所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計算圓柱體積的方法另外,還設(shè)計了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。
二、在教學(xué)策略方面
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。而在鞏固練習(xí)這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的優(yōu)點。
三、在教學(xué)技能方面
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)過程中發(fā)現(xiàn)并從學(xué)生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導(dǎo)的過程需要教師有認(rèn)真準(zhǔn)備,隨時能解決課堂上可能出現(xiàn)的一些問題。傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景。
四、存在的問題
不足之處是:由于這節(jié)課的設(shè)計是以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,所以在學(xué)生動手實踐、交流討論和思考的時間上教師應(yīng)合理把握,不能時間較多,否則會導(dǎo)致練習(xí)的時間較少。
另外,在練習(xí)設(shè)計上,題形雖然全,但覺得題量偏多,因為這部分練習(xí)涉及的計算多、難,這樣練習(xí)題還需精心設(shè)計。
圓柱的體積教學(xué)反思2
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出“數(shù)學(xué)教學(xué)要讓學(xué)生經(jīng)歷知識的形成過程”;“通過義務(wù)教育階段的學(xué)習(xí),學(xué)生能夠初步學(xué)會運用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實社會,去解決日常生活和其它學(xué)科學(xué)習(xí)中的問題,增加應(yīng)用數(shù)學(xué)的意識”。不難發(fā)現(xiàn)新課標(biāo)注重的不只是讓學(xué)生掌握學(xué)習(xí)中的結(jié)論,更關(guān)注的是他們個性的體驗,在學(xué)生主動參與、實踐交流、合作探究中去經(jīng)歷知識形成的過程,通過不斷地發(fā)現(xiàn)問題、提出問題、分析問題、解決問題,積累生活中的經(jīng)驗,培養(yǎng)應(yīng)用數(shù)學(xué)的能力,體驗數(shù)學(xué)的樂趣,感受數(shù)學(xué)在生活中的應(yīng)用價值。為此,在本小節(jié)的教學(xué)中我著重做了以下幾點:
一、創(chuàng)設(shè)問題情境,激發(fā)學(xué)生求知興趣。
學(xué)習(xí)圓柱的體積我是這樣創(chuàng)設(shè)情境:1、長方體、正方體的體積是怎樣求的?(根據(jù)學(xué)生回答統(tǒng)一為v=sh)2、圓的面積是怎樣推導(dǎo)的?(化曲為直)3、如何求出圓柱的體積?能否借助于學(xué)過的知識和方法來推導(dǎo)圓柱的體積計算方法?一系列問題情境的創(chuàng)設(shè),既有復(fù)習(xí)讓學(xué)生做好知識上的儲備,以便探求新知,又有一定的指導(dǎo)性、幫助性、鼓勵性,容易激發(fā)學(xué)生求知的興趣,調(diào)動學(xué)生參與學(xué)習(xí)的熱情,同時也便于學(xué)生掌握學(xué)習(xí)的方向,不致于在下面的學(xué)習(xí)過程中顯得無所適從。
二、預(yù)設(shè)開放情境,引發(fā)學(xué)生操作欲望。
圓柱的體積公式推導(dǎo)教材上編排的只是一種擺放的方式,有一定的局限性,容易限制學(xué)生的思維,也容易引起學(xué)生想入非非。此處是教學(xué)中很好的生成資源,是引發(fā)學(xué)生操作、探究、解決心中疑問的切入點。教學(xué)中,我并沒有一味的按書本的方式讓學(xué)生去擺放長方體,而是為學(xué)生預(yù)設(shè)一種開放的情境:把圓柱體切開后,拼成的長方體有哪幾種擺放的方式?它們的底面積和高與圓柱的哪些部有關(guān)系?一石激起千層浪,學(xué)生小組操作興趣盎然,通過擺一擺、放一放、找一找、說一說,學(xué)生發(fā)現(xiàn)無論豎放、立放還是平放,從哪個角度思考,均能得到圓柱體積的計算公式為v=sh,學(xué)生大呼神奇。是的,這就是數(shù)學(xué)的魅力,這就是學(xué)生在經(jīng)歷知識形成過程中所獲得成功的樂趣,學(xué)生親身感受到數(shù)學(xué)的美,領(lǐng)略到數(shù)學(xué)天地中的風(fēng)光無限,這是學(xué)生最開心的,也是課堂教學(xué)應(yīng)追求的精彩。
三、增設(shè)創(chuàng)新情境,誘發(fā)學(xué)生探究動機。
在圓柱體積應(yīng)用的教學(xué)中,教材中的例5是求物體的容積,計算結(jié)果要求保留一位小數(shù)(26847立方厘米≈26.8立方分米),教材在編寫的時候可能沒注意到容積計算應(yīng)如何取近似值,而例題的設(shè)計又偏偏正好是“四舍”,忽略了生活中的一些實際情況,此處容易給學(xué)生造成知識上的欠缺,為此在教學(xué)中,我結(jié)合前面已學(xué)過的“進一法”,為學(xué)生增設(shè)了一個情境:如果要求得數(shù)保留整數(shù),值應(yīng)取多少?有的學(xué)生根據(jù)已有的`知識經(jīng)驗進行討論,有的學(xué)生聯(lián)系生活實際說明理由,討論很是激烈,個個爭得面紅耳赤,借助交流的機會,老師給予適當(dāng)?shù)狞c拔和引導(dǎo),學(xué)生終究明白“四舍五入法”、“進一法”、“去尾法”的不同用處。課書沒有出現(xiàn)的知識,學(xué)生通過自己的研究與探索獲得,內(nèi)心的喜悅是無法比擬的,學(xué)生探究問題意識增強的同時,隨之創(chuàng)新能力也得到了不斷的發(fā)展。
教育家第斯多惠曾說:“教學(xué)的藝術(shù)不僅僅在于傳授本領(lǐng),而在于激勵、呼喚、鼓勵。”事實上,學(xué)生對力所能及而又需要親身探究的問題最感興趣,因此,老師在教學(xué)中應(yīng)根據(jù)教學(xué)內(nèi)容、教學(xué)需要,適當(dāng)調(diào)整教材,加工教材,合理創(chuàng)設(shè)有效的教學(xué)情境去啟發(fā)學(xué)生的思維,鼓勵學(xué)生創(chuàng)新,激勵學(xué)生探索,呼喚學(xué)生學(xué)習(xí)積極性。
圓柱的體積教學(xué)反思3
我進行了圓柱體積的教學(xué),圓柱的體積公式的推倒,需要學(xué)生的動手操作或教師教具的操作演示,把圓柱體轉(zhuǎn)化成學(xué)過的立體圖形長方體,再根據(jù)長方體與圓柱體之間的關(guān)系推倒出圓柱體的體積。上課前我對學(xué)生的動手操作環(huán)節(jié)進行了思考,學(xué)生的學(xué)具就既小又直接拼成了長方體,對于學(xué)生操作起不到效果,所以就直接用課件演示讓學(xué)生觀察.學(xué)生能很快的發(fā)現(xiàn)知識,因此推導(dǎo)時間過短,總感覺沒有達到效果。學(xué)生缺少動手實踐,就沒有了探究知識的過程,很多的同學(xué)可能只是被動的接受知識。這一次讓學(xué)具和教具成了教學(xué)的絆腳石。
其次有一個學(xué)生大膽猜想圓柱體也有可能轉(zhuǎn)化成正方體,當(dāng)時講到轉(zhuǎn)化為長方體時,沒有及時處理好這個學(xué)生的.問題,而是在下一個課時補處理的。對于課堂的靈活掌控也是不夠的。在今后的教學(xué)中要加強自身對課堂的掌控能力。靈活及時處理課堂中的問題。
圓柱的體積教學(xué)反思4
《圓柱的體積》是在學(xué)生已經(jīng)學(xué)會計算長方體、正方體的體積,并且掌握圓柱基本特征的基礎(chǔ)上,引導(dǎo)學(xué)生探索并掌握圓柱的體積公式。通過教材教學(xué)學(xué)習(xí)后,下面我從教學(xué)過程、教學(xué)策略、教學(xué)技能等方面談?wù)勛约旱囊恍┓此肌?/p>
一、在教學(xué)過程的設(shè)計方面
1、導(dǎo)入時,力求突破教材,有所創(chuàng)新
圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強,不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。
2、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)
學(xué)生進行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,我讓學(xué)生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的'體驗,,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。
3、練習(xí)時,形式多樣,層層遞進
例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我在設(shè)計練習(xí)時動了一番腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型: a。已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。
b。已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πr2h。
c。已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2)2h。
d。已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)2h。
e。已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2)2h。
因為是第一課時所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計算圓柱體積的方法另外,還設(shè)計了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。
二、在教學(xué)策略方面
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。而在鞏固練習(xí)這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的優(yōu)點。
三、在教學(xué)技能方面
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)過程中發(fā)現(xiàn)并從學(xué)生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導(dǎo)的過程需要教師有認(rèn)真準(zhǔn)備,隨時能解決課堂上可能出現(xiàn)的一些問題。傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景。
四、教學(xué)要達到三個目的
一是認(rèn)識等底等高的含義,便于判斷圓柱可以轉(zhuǎn)化成與它等底等高的長方體。
二是從長方體與正方體等底等高,體積也相等的事實,引發(fā)等底等高的圓柱與長方體的體積也相等的猜想,形成把圓柱轉(zhuǎn)化成長方體的活動心向。
三是復(fù)習(xí)長方體、正方體的體積公式,圓柱的體積最終也要這樣計算。
圓柱的體積教學(xué)反思5
本節(jié)的教學(xué)重難點是:
1、探索并掌握圓柱體積公式,能計算圓柱的體積。
2、在探索圓柱體積的過程中,進一步體會轉(zhuǎn)化的數(shù)學(xué)思想,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)結(jié)論的確定性。
教學(xué)方法:我利用課件演示和實物演示來解決。讓學(xué)生學(xué)會轉(zhuǎn)化的'數(shù)學(xué)思想。
成功之處:
1、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;
2、遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動多種感觀參與學(xué)習(xí);
3、正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。達到預(yù)期效果。
不足之處:
1、個別學(xué)生還是對公式不會靈活應(yīng)用。
2、練習(xí)題有些多,應(yīng)選擇一些有代表性的題,這樣小測驗就能有充足的時間了。
3、關(guān)注學(xué)生的有些少,尤其是應(yīng)關(guān)注做錯的學(xué)生,應(yīng)知道為什么錯,及時在課堂評價出結(jié)果會更好。
4、老師講得多,應(yīng)放手讓學(xué)生自己觀察自己處理自己總結(jié),會更好。
圓柱的體積教學(xué)反思6
在教學(xué)圓柱的體積時,我采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。通過這節(jié)
課的教學(xué),我覺得有以下幾個方面值得探討:
一、聯(lián)系舊知,導(dǎo)入新知。
圓柱的體積的導(dǎo)入,在回憶了長方體、正方體體積計算方法,并強調(diào)長方體、正方體的體積都可以用底面積乘高,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想:“圓柱體是否可以轉(zhuǎn)化成我們學(xué)過的圖形呢?”激發(fā)學(xué)生好奇心,獨立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導(dǎo)入新知,思維過度自然,易接受新知。
二、動手操作,探索新知。
學(xué)生在探究新知時,教師要給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時,學(xué)生親身參與操作,先用小刀把一塊月餅切成一個圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體。找一找:這個長方體的長相當(dāng)于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導(dǎo)出圓柱體積的計算公式。
三、課件展示,加深理解。
為了直觀、形象,讓學(xué)生觀看課件:圓轉(zhuǎn)化成近似長方形的過程,使學(xué)生很容易猜想出圓柱體也可以轉(zhuǎn)化成近似的長方體來得出體積公式。在推導(dǎo)圓柱體積公式的過程中,要求學(xué)生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學(xué)生雖然能說出“拼成的物體越來越接近長方體! 但是,到底拼成的'圖形怎樣更接近長方體?演示動畫后,學(xué)生不僅對這個切拼過程一目了然,同時又加深理解了圓柱體轉(zhuǎn)化成近似長方體的轉(zhuǎn)化方法。
四、分層練習(xí),發(fā)散思維。
為了培養(yǎng)學(xué)生解題的靈活性,進行分層練習(xí),拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
但是不成功的地方也有,如學(xué)生在操作時有些學(xué)生拼的不是長方體,而是其他的形狀,這里由于是上公開課的原因就沒有有針對性的講解,只做到了多數(shù)學(xué)生的指導(dǎo)而沒有做到面向全體學(xué)生,這點我覺得在課堂上很難做到。
總之,通過這次的國培學(xué)習(xí),使我的思想認(rèn)識和課堂技能都有了新的認(rèn)識,感謝國培!
教材作為教學(xué)的憑借與依據(jù),只不過是編者對學(xué)科知識、國家要求與學(xué)生進行整和思考的結(jié)晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實際的“跳板”。因此,教學(xué)時,我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實際,創(chuàng)造性地利用教材。
圓柱的體積教學(xué)反思7
圓柱的體積計算方法的推導(dǎo)。教學(xué)前我就思考,不僅要讓學(xué)生掌握圓柱體積的計算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示掛圖:等底等高的`長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測:
。1)圓柱的體積等于長方體和正方體的體積。
。2)圓柱的體積也等于底面積乘高。猜測是否準(zhǔn)確呢?
點燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用學(xué)具驗證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。還有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。首先我對這種方法加以肯定,然后利用圓的周長和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。
圓柱的體積教學(xué)反思8
今天上了《圓柱的體積》一課,覺得比以前上得輕松,回到辦公室細(xì)細(xì)品味上課的過程,頗有幾分感受:
在本課中,當(dāng)學(xué)生面對新的問題情境—“圓柱的體積該怎么求?”時,能從圓的面積公式的推導(dǎo),根據(jù)已有的知識作出 “轉(zhuǎn)化”的判斷。當(dāng)然,由于知識經(jīng)驗的不足,表達得不是很清晰。但學(xué)生的這些都是有價值的。這些“猜想”閃爍著學(xué)生智慧的火花,折射出學(xué)生的創(chuàng)造精神。在此基礎(chǔ)上,讓學(xué)生以小組合作方式,利用已切開的圓柱體教具進行驗證,在討論聲中,學(xué)生獲得了真知。可見,教師要保護學(xué)生的創(chuàng)造熱情并給以科學(xué)探究方法的引導(dǎo),以發(fā)展學(xué)生的創(chuàng)造性。在這點上,我對學(xué)生的探究精神給予了充分的肯定。這節(jié)課再次讓我知道了,相信學(xué)生的創(chuàng)造力是我們設(shè)計教法的前提。
在引導(dǎo)學(xué)生解決“粉筆的體積”等這個問題時,課堂上有學(xué)生把它當(dāng)作圓柱體積來求,提出:“誤差這么小,是可行的!倍夷俏粚W(xué)生要求的僅是一個大約的數(shù)值,所以用這種方法可以。但這種計算粉筆體積的方法可行嗎?如果我不提出疑義,也不加以說明,就會給學(xué)生造成“圓臺的體積可以用這兩種方法來計算”的錯誤認(rèn)識,對學(xué)生的后續(xù)學(xué)習(xí)會造成一些不利的影響。我就這個問題引導(dǎo)學(xué)生進一步探索,使學(xué)生發(fā)現(xiàn)平面圖形中的一些規(guī)律照搬到立體圖形中有時會行不通,懂得知識并非一成不變的,有其發(fā)展性,初步理解三維空間物體與二維平面圖形的聯(lián)系與區(qū)別,為進一步學(xué)習(xí)積累經(jīng)驗。學(xué)生在探索過程中,雖不能很快獲得結(jié)論性的`知識,但卻嘗試了科學(xué)探究的方法,形成良好的思維品質(zhì),增進了情感體驗。這樣,既保護了學(xué)生的創(chuàng)造性,又保證了教學(xué)內(nèi)容的科學(xué)性,就學(xué)生的發(fā)展而言,誰能說讓學(xué)生經(jīng)歷這樣探究的過程,不也比獲得現(xiàn)成的結(jié)論更富有積極的意義?
圓柱的體積教學(xué)反思9
在本節(jié)課的教學(xué)中,教師根據(jù)教學(xué)的需要,充分利用現(xiàn)實生活中的素材,把教材中有關(guān)圓柱的提積的應(yīng)用所呈現(xiàn)的內(nèi)容變?yōu)楝F(xiàn)實生活中的問題,變書本知識為生活中的知識。
本節(jié)課中教師沒有過多地教學(xué)生,而讓學(xué)生回歸到生活原形中去,應(yīng)用所學(xué)的知識解決了生活中的實際問題,使本來很枯燥的圓柱的體積應(yīng)用的題材生活化,增加了學(xué)生的信息量,提高了學(xué)生體會數(shù)學(xué)奧秘的積極性。學(xué)生體會到了生活中處處有數(shù)學(xué),數(shù)學(xué)就在我們身邊,知識才是我們解決實際問題的“金鑰匙”。通過尋找這些信息背后的信息,學(xué)生掌握了知識、形成了技能。同時也感受到了數(shù)學(xué)應(yīng)用的廣泛性以及數(shù)學(xué)與生活的緊密聯(lián)系。
但在本節(jié)課中也有不足的地方,如①由于中心問題空間較大,具有挑戰(zhàn)性,中下等學(xué)生自主探索有一定的難度;②實踐中,學(xué)生獨立思考和小組討論花時間太多,影響了后面的'教學(xué),這都是以后在教學(xué)中應(yīng)注意的問題。
總之,隨著數(shù)學(xué)的發(fā)展,數(shù)學(xué)的應(yīng)用也越來越廣泛。作為教師的我們,應(yīng)該提供給學(xué)生充分的機會,讓學(xué)生運用已學(xué)過的數(shù)學(xué)知識解決問題,在問題的解決過程中,發(fā)展學(xué)生的思維能力,用數(shù)學(xué)的眼光去感知、去觀察、去應(yīng)用。
圓柱的體積教學(xué)反思10
一、我在導(dǎo)入時,突破教材,有所創(chuàng)新 圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強,不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。我認(rèn)為,不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。
二、我教學(xué)新課時,實現(xiàn)人人參與,主動學(xué)習(xí) 學(xué)生進行數(shù)學(xué)探究時,教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時,由于學(xué)校教學(xué)條件差,沒有更多的學(xué)具提供給學(xué)生,只是由教師示范演示推導(dǎo)過程:把圓柱的.底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學(xué)階段立體圖形的教學(xué)難點,學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認(rèn)知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
三、我在 練習(xí)時,形式多樣,層層遞進 ,例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習(xí)時要多動腦,花心思。
圓柱的體積教學(xué)反思11
對《圓柱的體積》一節(jié),備課階段,我跟馮老師討論過,3.19下午,又全程聆聽了三位教師的同課異構(gòu),領(lǐng)略了他們不同個性的教學(xué)風(fēng)格。在我看來,盡管是同課異構(gòu),盡管是個性課堂,一些基本的原則還是要遵守的。例如,深入地理解教材,例如,盡可能地保持?jǐn)?shù)學(xué)的邏輯嚴(yán)密性,等等。
對于這節(jié)教材的理解,最嚴(yán)重的分歧可能來自圓柱的體積公式。教材為什么給出的是“V=Sh”而不是“V=πrh”。我想,這里的原因大概有兩個:一是要統(tǒng)一(柱體的)體積公式,減輕學(xué)生的記憶負(fù)擔(dān)。事實上,V=Sh也確實更能體現(xiàn)柱體體積的本質(zhì),不同柱體體積的不同公式,只是進一步描述了它們的不同的S罷了。另一個原因,是為方便學(xué)生對公式推導(dǎo)過程的理解。當(dāng)圓柱被分割為有限個曲面三棱柱并拼為準(zhǔn)長方體時,半徑r只是接近而并沒有等于長方體的寬,只有這個分割被無限化(取極限)時,圓柱的半徑才能與長方體的寬相等。因此,與其讓學(xué)生去費解地或不求甚解地觀察“長方體的寬與圓柱的半徑的關(guān)系”,還不如只觀察兩者的底面積S。在我看來,這樣地處理,是新教材較舊教材高明之處,而有的教師之所以走回老路,恐怕是對新教材理解不到位的緣故。
對于這節(jié)課的異構(gòu),分歧最大的地方可能是對探索或計算的側(cè)重,以及是否需要、是否可以有多種探索方法。從教材的表述看,這節(jié)課的新授完全圍繞著公式的提出(猜想)、推導(dǎo)(驗證)展開,其第一課時的教學(xué)重點無疑應(yīng)當(dāng)放在公式的探索上。至于探索的途徑或方法,我認(rèn)為,主要有兩個:一是轉(zhuǎn)化,把圓柱體轉(zhuǎn)化為長方體,二是驗算,假設(shè)猜想的公式是正確的,利用它算出結(jié)果并設(shè)法檢驗。例如,可以將圓柱形固體放到較大的液體量具中,通過比較圓柱體積的猜想值與液體體積的增長量,證明體積計算的正確性。也可以將圓柱體形狀的橡皮泥捏成長方體形狀,如果能夠在變形的過程中保持高的不變,則可以直接證明所猜想公式的正確性,否則,就要通過計算來作出間接的證明。如何理解教材中“堆硬幣”的意圖?我以為,這段教材的用意在于“提出猜想”而非驗證猜想。之所以這樣認(rèn)為,原因有二,一是教材的表述,它說的.是:“從‘堆硬幣’來看,用‘底面積乘高’可以計算出圓柱的體積。”而不是說圓柱的體積就是底面積乘高’。二是如果作為驗證方法,在邏輯上就犯了循環(huán)論證的錯誤,因為硬幣本身實際上也是圓柱,它的體積是否等于底面積乘高,本身就是要待驗證的。馮老師在教學(xué)中將其處理為“無數(shù)個圓疊加成為圓柱”,則使得它在邏輯上不再循環(huán)(雖然,這里的“積分過程”包含的極限思想要比“化圓為方”更難為小學(xué)生所理解。)。我認(rèn)為,由于“堆硬幣”的目的在于換一個角度提出猜想,教學(xué)中當(dāng)學(xué)生能夠提出猜想時,“疊圓成柱”的過程就顯得不那么非要不可了。而通過多媒體課件演示圓柱的“化圓為方”的過程卻是完全必要的。教師與學(xué)生一道經(jīng)歷了把十六等分的曲面三棱柱拼成“準(zhǔn)長方體”之后,可以引導(dǎo)學(xué)生觀察這個長方體的“近似性”,并啟發(fā)他們想象當(dāng)?shù)确值臄?shù)量增大到三十二、六十四、----的情況,在其想象之后,再用課件演示極限化的過程,大多數(shù)學(xué)生應(yīng)當(dāng)是可以真正理解的。
圓柱的體積教學(xué)反思12
圓柱的體積這部分知識是學(xué)生在有了圓柱、圓和長方體的相關(guān)知識基礎(chǔ)上進行教學(xué)的。通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過程,會計算圓柱的體積;體現(xiàn)數(shù)學(xué)知識“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探究。
一、讓學(xué)生在現(xiàn)實情境中體驗和理解數(shù)學(xué)
《課程標(biāo)準(zhǔn)》指出:要創(chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的、又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測、交流、反思等活動中體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數(shù)學(xué)的力量,同時掌握必要的基礎(chǔ)知識與基本技能。在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的水的體積你會求嗎?圓柱形橡皮泥的體積你會求嗎?)學(xué)生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯(lián)系。在此基礎(chǔ)上教師又進一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機滾筒的體積,能用剛才同學(xué)們想出來的辦法嗎?這一問題情境的'創(chuàng)設(shè),激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。
二、鼓勵學(xué)生獨立思考,引導(dǎo)學(xué)生自主探索、合作交流
數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨立思考要解決圓柱的體積問題,可以怎么辦?采用小組討論交流的形式。有了圓面積計算公式推導(dǎo)的經(jīng)驗,經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。小組拿出學(xué)具進行了動手操作,拼成了一個近似的長方體。同學(xué)們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。讓學(xué)生根據(jù)已有的知識經(jīng)驗創(chuàng)造性地建構(gòu)自己的數(shù)學(xué)。通過實驗、操作、自主探究,實現(xiàn)學(xué)生主體地位、學(xué)習(xí)方式的轉(zhuǎn)變,有效地培養(yǎng)學(xué)生的創(chuàng)新意識。教學(xué)中通過等分、切、拼將圓柱體拼成一個近似的長方體,再運用多媒體顯示由圓柱體到近似的長方體的變換過程,讓學(xué)生觀察、比較近似長方
體與圓柱的關(guān)系,使圓柱體體積的計算公式推導(dǎo)過程完全展示在學(xué)生面前。使學(xué)生感悟到轉(zhuǎn)化的思想在幾何學(xué)習(xí)中的妙用。從而產(chǎn)生一種自我嘗試、主動探究、樂于發(fā)現(xiàn)的需要、動機和能力。
三、建立切拼表象,滲透極限思想
學(xué)生進行數(shù)學(xué)探究時,由于條件的限制,沒有更多的學(xué)具提供給學(xué)生,只一個教具。為了讓學(xué)生充分體會,我把操作的機會給了學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來的圖形就越接近長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生基本沒有親身參與操作,很遺憾。
圓柱的體積教學(xué)反思13
今天教學(xué)“圓柱體的體積”。接受昨天學(xué)生提出的“只學(xué)不會的”學(xué)習(xí)方式,在黑板上分了兩個區(qū)域,一個復(fù)習(xí)區(qū)域:長方體的體積怎樣計算?圓的面積計算公式是怎樣推導(dǎo)出來的呢?重點研究區(qū)域:圓柱體的體積怎樣計算?
面對復(fù)習(xí)的問題,學(xué)生回答的很好,長方體的體積=長×寬×高,當(dāng)我指著長方體的底面時,學(xué)生就說,長方體的體積=底面積×高。學(xué)生對于圓的面積計算公式的的推導(dǎo)記憶猶新,這是很值得我高興的。面對本課的重點解決問題,我滿懷信心(兩個復(fù)習(xí)問題的鋪墊,學(xué)生會首先想起來把圓柱體按照圓的面積推導(dǎo)過程一樣,來等分圓柱體),開始引導(dǎo)學(xué)生獨立思考,怎樣計算圓柱體的體積?正當(dāng)大家苦思冥想的時候,高邁把手舉得高高的:老師,我想出來一種。又是他,每次回答問題總是第一個舉手,把別人的“風(fēng)頭”都給搶去了,他是一個愛表現(xiàn)的學(xué)生,為了不影響其他學(xué)生思考,每次我總是“壓一壓”他的積極性!敖o大家留一點思考的時間,等一會再說你的.方法”,誰知道這個“積極分子”不容我把話說完,已經(jīng)拿著自己的圓柱體跑到講臺上了,(哎,讓我怎么評價他呢,耐不住性子啊,再穩(wěn)重一些多好?),:我是這樣想的,這是一個圓柱體的生日蛋糕,我想把它橫著切成一個個圓片( ),分給你們吃。霎時間,下面的同學(xué)都笑了,過了一會,一個學(xué)生提問:切蛋糕,和圓柱體的體積有什么關(guān)系。俊坝邪,這個圓柱體蛋糕的體積就是每一個圓片的面積乘上圓片的個數(shù)!边@樣解釋完,下面的學(xué)生有的在笑,有的在議論,還有的再思考。我想想了,這是我該出手的時候了:“高邁, 給大家解釋一下,圓片是什么?圓片的個數(shù)又是什么?”“圓片就是圓柱的底面積,圓片的個數(shù)就是圓柱的高”。話音剛落,掌聲響了起來……。
這種推導(dǎo)圓柱體體積的計算方法,是出乎我意料之外的,因為,解決問題前,已經(jīng)復(fù)習(xí)了長方體體積計算方法與圓的面積的推導(dǎo)方法,都是為“把圓柱體進行等分轉(zhuǎn)化成長方體體積來推導(dǎo)”做鋪墊的。誰曾向,這種用“堆”的過程來說明“底面積×高”計算圓柱體體積的道理,實際是“積分”思想,這是要到中學(xué)才學(xué)習(xí)的,學(xué)生不好理解的,竟然跑到“預(yù)想方法”之前了。真是“計劃不如變化快啊”。課堂上的“精彩總是不期而至”啊。試想,如果,剛開始他舉手,我就像以往一樣“壓一壓他,讓他和其他學(xué)生同步思考,說不定,這個想法在他腦海里轉(zhuǎn)瞬即逝,那么這個精彩的火花就不會在課堂上呈現(xiàn)。由此感悟到,課堂上,要給學(xué)生即興發(fā)言的機會,及時的捕捉學(xué)生的思維靈感,精彩就會不期而至。
圓柱的體積教學(xué)反思14
優(yōu)點:
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。這樣學(xué)生親身參與操作,有了空間感覺的體驗,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。
不足:
由于學(xué)生的學(xué)具有限,在很大程度上阻礙了學(xué)生主動探究的`欲望和動手操作的能力,加上本人能力有限,語言組織能力不是很好,使課堂氣氛不是那么活躍,課堂顯得有些壓抑
再教設(shè)想:
在課的設(shè)計上以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,在學(xué)生動手實踐、交流討論和思考的時間上教師應(yīng)合理把握。
圓柱的體積教學(xué)反思15
一、導(dǎo)入時,要突破教材,有所創(chuàng)新圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強,不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。我認(rèn)為,不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。
二、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)學(xué)生進行數(shù)學(xué)探究時,教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時,由于學(xué)校教學(xué)條件差,沒有更多的`學(xué)具提供給學(xué)生,只是由教師示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學(xué)階段立體圖形的教學(xué)難點,學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認(rèn)知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
三、練習(xí)時,要形式多樣,層層遞進
例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習(xí)時要多動腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。
【圓柱的體積教學(xué)反思】相關(guān)文章:
圓柱的體積教學(xué)反思12-08
《圓柱的體積》教學(xué)反思02-13
圓柱的體積教學(xué)反思05-16
(熱門)《圓柱的體積》教學(xué)反思07-05
(精華)《圓柱的體積》教學(xué)反思07-08
圓柱的體積教學(xué)反思[熱門]07-08
[精華]《圓柱的體積》教學(xué)反思07-08
圓柱的體積教學(xué)反思(薦)05-16