(通用)乘法分配律教學(xué)反思15篇
身為一名剛到崗的人民教師,教學(xué)是重要的任務(wù)之一,對學(xué)到的教學(xué)新方法,我們可以記錄在教學(xué)反思中,教學(xué)反思要怎么寫呢?下面是小編收集整理的乘法分配律教學(xué)反思,希望對大家有所幫助。
乘法分配律教學(xué)反思1
設(shè)計理念:
《乘法分配律》是小學(xué)數(shù)學(xué)教材中一個經(jīng)典的教學(xué)內(nèi)容,它不是單一的乘法運算,還涉及到加法運算,在理論算術(shù)中又稱之為乘法對加法的分配性質(zhì)。在重視數(shù)學(xué)基礎(chǔ)知識和基本技能的小學(xué)傳統(tǒng)教學(xué)理念下,十分重視對數(shù)學(xué)性質(zhì)、定律的傳授,及運用性質(zhì)和定律進行簡便計算。隨著《數(shù)學(xué)課程標(biāo)準(zhǔn)》的正式使用,在教學(xué)中必須把教學(xué)目標(biāo)、教學(xué)重點重新定位,教學(xué)方式及學(xué)生的學(xué)習(xí)方式都要有所創(chuàng)新有所突破。根據(jù)這一意圖,在確定教學(xué)目標(biāo)的時候,我將傳統(tǒng)的“使學(xué)生理解并掌握乘法分配律”,變更為“通過經(jīng)歷探索乘法分配律的活動,發(fā)現(xiàn)乘法分配律,能根據(jù)實際情況靈活運用乘法分配律進行一些簡便計算。”摒棄傳統(tǒng)的重結(jié)論的記憶、算法的模仿,而注重在讓學(xué)生發(fā)現(xiàn)、感悟、體驗數(shù)學(xué)規(guī)律的過程上,并且學(xué)會用辯證的思維方式思考問題,真正落實學(xué)生的主體地位。讓學(xué)生在課堂上經(jīng)歷數(shù)學(xué)研究的基本過程:感知——猜想——驗證——總結(jié)——應(yīng)用。在教學(xué)過程中根據(jù)學(xué)生的情況善導(dǎo),使學(xué)生學(xué)會科學(xué)的學(xué)習(xí)方法,不斷發(fā)展和完善自己,激發(fā)學(xué)生的創(chuàng)新靈感。
課堂實錄:
一、設(shè)計情境,初步感知規(guī)律
。、課件出示:
本學(xué)期學(xué)校來了4位新教師,總務(wù)處需要為老師購買辦公桌椅,了解到的價格情況:辦公桌第張100元,每把椅子40元,請同學(xué)們用所學(xué)的數(shù)學(xué)知識,幫助總務(wù)處算一算,為新教師購買辦公桌椅一共要多少錢?
。、學(xué)生列式計算匯報:
。100+40)×4100×4+40×
4=140×4=400+160
。560(元)=560(元)
。、表揚學(xué)生用兩種數(shù)學(xué)方法解決問題的同時,引導(dǎo)學(xué)生觀察兩個算式:“計算結(jié)果相等,就可以用等號連接兩個式子!
二、比賽激趣,引發(fā)猜想
1、比賽(分男女兩組)::
65×17+35×17(65+35)×17
28×42+62×42(28+62)×42
40×25+4×25(40+4)×2
5做后討論,感到計算結(jié)果相同,但計算的簡便有所不同。
。、兩題中自己選擇一題計算:
(62+38)×8862×88+38×88
說說自己選擇的理由。
【讓學(xué)生經(jīng)歷兩輪的競賽,探討取勝之法,感知乘法分配律的特征,初步形成乘法分配律應(yīng)用的可逆性的表象!
三、開拓思維,驗證猜想
。薄⒂^察前面五組題目,鼓勵學(xué)生用自己的方式來表示自己的發(fā)現(xiàn)。
生1:(A+B)×C=A×C+B×C
生2:(○+□)×△=○×△+□×△
生3:(老+師)×邱=老×邱+師×邱
??
。病⑻釂枺和瑢W(xué)們肯定已經(jīng)在這里找到了一個規(guī)律,可是,是不是所有的數(shù)學(xué)都適合這個規(guī)律呢?你能不能再舉例證明自己的猜想呢?
學(xué)生自由舉例。
在學(xué)生所舉例子的基礎(chǔ)上,引導(dǎo)學(xué)生從乘法的意義上去理解算式。
以98×21+2×21=(98+2)×21為例:
左邊表示98個21加上2個21,一共100個21,左邊也是100個21。等號兩邊的形式雖然不同,但所表示的意義是一樣的。其他算式所表示的道理也是一樣的。
。、歸納:嘗試用數(shù)學(xué)語言概括規(guī)律,再對照書本,規(guī)范語言。
四、辯證思考,靈活運用
。、怎樣簡便怎樣算
。ǎ保8+92)×537×42+63×
42(2)101×4518×16+17×16
(3)(100+40)×432×5+8×
5學(xué)生先觀察,再交流方法。
生1:像第(1)組的題目,還是用乘法分配律比較簡單。
生2:101×45這題,101接近100,我把101改寫成(100+1),然后運用乘法分配律,計算就很簡便。
師生一起加以肯定。
生3:18×16+17×16這一題我覺得怎樣算都不簡便。
生4:我覺得這題運用乘法分配律,先求出18+17的和比較簡便,因為這樣只算兩步,按照原來的運算順序要算三步。
師:乘法分配律是通過改變原來算式的運算順序,使計算方便,雖然18×16+17×16計算時沒有出現(xiàn)整十整百數(shù),但改變運算順序后,計算比原來方便了。
生5:第(3)組的兩道題目其實這樣直接算也比較簡便,不一定要用乘法分配律。
師:(贊賞地)說得好!在計算的時候要根據(jù)數(shù)字特點靈活運用乘法分配律,不要盲目使用。
【比較是一種很好的教學(xué)手段,它能幫助學(xué)生形成辯證的思維觀念,深刻理解知識內(nèi)涵】
。、開放題
63×15+()×()=(+)×()
學(xué)生匯報。
教師從兩個方面來定位:A是否符合乘法分配律;B是否能在計算上簡便。
教學(xué)反思:
1、知識的學(xué)習(xí)不是簡單的“搭積木”的過程,而是一個生態(tài)式“孕育”的過程。在設(shè)計教
案時,我們必須從學(xué)生的生活經(jīng)歷、知識背景、學(xué)習(xí)能力、情感與態(tài)度等方面解讀教材,讓學(xué)生在現(xiàn)實具體的情境中體驗和理解數(shù)學(xué)。通過學(xué)生經(jīng)歷運用數(shù)學(xué)知識為學(xué)生解決問題和男女生比賽等的練習(xí),引導(dǎo)學(xué)生觀察、發(fā)現(xiàn)、驗證、歸納,初步了解感知規(guī)律,再次通過練習(xí)、描述、完善認(rèn)識,達到對規(guī)律的理解,建立模型,最后又在熟悉的情境中深化認(rèn)識認(rèn)識規(guī)律,豐富規(guī)律的內(nèi)涵。
2、充分體現(xiàn)尋找規(guī)律、描述規(guī)律、應(yīng)用規(guī)律、發(fā)展規(guī)律的過程。確定教學(xué)目標(biāo)時,我將傳統(tǒng)的“使學(xué)生理解并掌握乘法分配律”,拓展為“通過經(jīng)歷探索乘法分配律的活動,發(fā)現(xiàn)乘法分配律”,在關(guān)注結(jié)果的`同時,更多關(guān)注學(xué)生獲得結(jié)果的過程。學(xué)生從對規(guī)律的初步了解、深入理解到應(yīng)用和拓展,是一個從瑣碎到整合,正表述到逆表述,從單一到開放,從靜態(tài)到動態(tài)的過程。其間培養(yǎng)了學(xué)生從“猜想與驗證”等探究的方法。
。、學(xué)生對知識的應(yīng)用從新課的學(xué)習(xí)開始就會形成一種思維定勢:學(xué)生會認(rèn)為只要應(yīng)用乘法分配律就能使所有的計算都變得簡便。應(yīng)用乘法分配律進行簡便計算,就是要得到一個整十整百數(shù),這樣才叫簡便。而忽視了乘法分配律的真正內(nèi)涵——改變原來式子的運算順序,結(jié)果不變。在教學(xué)中,我有意識地選擇了第(3)組兩種情況,讓學(xué)生明白,乘法分配律不是簡便計算,是兩個相等算式之間的結(jié)構(gòu)特征,只有當(dāng)數(shù)據(jù)比較特殊時,可以運用乘法分配律來改變計算順序,使原先的計算變得簡便。這種科學(xué)的辯證思想的建立,對學(xué)生具體問題具體分析,靈活地選擇合理的方法計算是十分有利的。其次,運用乘法分配律,可以用兩種方法解決實際問題,增加解決問題的能力。
乘法分配律教學(xué)反思2
《乘法分配律》是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個定律中的難點。故而,對于乘法分配律的教學(xué),我沒有把重點放在數(shù)學(xué)語言的表達上,而是把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……
1、關(guān)注學(xué)生已有的知識經(jīng)驗。以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境,喚醒了學(xué)生已有的知識經(jīng)驗,使學(xué)生初步感知乘法分配律。
2、展示知識的發(fā)生過程,引導(dǎo)學(xué)生積極主動探究。讓學(xué)生根據(jù)提供的問題,用不同的方法解決,引導(dǎo)學(xué)生觀察,讓學(xué)生說明自己發(fā)現(xiàn)的.規(guī)律。不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力。
3、出示乘法分配律的幾種不同的形式讓學(xué)生進行練習(xí)。
通過這一系列的教學(xué)措施,一節(jié)課下來,總體感覺良好——覺得同學(xué)們掌握得還不錯。于是,我布置了讓學(xué)生們完成練習(xí)冊中《乘法分配律》這一課的習(xí)題。
當(dāng)我批改練習(xí)時我傻了眼,學(xué)生的作業(yè)大多是中,少部分得良和差(我的作業(yè)批改評定標(biāo)準(zhǔn)),為什么會是這樣的結(jié)果,我進行反思,發(fā)現(xiàn)是講時,例題出示的不多,當(dāng)時學(xué)生都會做了,但是對于熟練掌握這個既是重點又是難的課程的確不是那么簡單的,三種題型放在一起學(xué)生就很容易受到干擾,結(jié)果是張冠李戴,錯得讓我涕笑皆非。而為了讓學(xué)生把這個知識點掌握牢固,我整整又用了兩節(jié)課。
通過這個知識點的教學(xué),我發(fā)現(xiàn)數(shù)學(xué)不多練是不行的。在學(xué)生理解之后,必須對其進行及時、有效的練習(xí)才可以使知識掌握的更加牢固。
乘法分配律教學(xué)反思3
乘法分配律是學(xué)生較難理解和敘述的定律,比起乘法交換率和乘法結(jié)合率男掌握的多。因此在本節(jié)課教學(xué)設(shè)計上,我結(jié)合新課標(biāo)的一些基本理念和學(xué)生的具體情況,注重從實際出發(fā),把數(shù)學(xué)知識和實際生活緊密聯(lián)系起來,讓學(xué)生在不斷的感悟和體驗中學(xué)習(xí)新知識。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的!睌(shù)學(xué)教育家波利亞曾經(jīng)說過:“數(shù)學(xué)教師的首要責(zé)任是盡其一切可能,來發(fā)展學(xué)生解決問題的能力。”而我們過去的教學(xué)往往比較重視解決書上的數(shù)學(xué)問題,學(xué)生一旦遇到實際問題就束手無策。因此,上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設(shè)了一個肯德基餐廳用餐的情境,使學(xué)生置身于非常熟悉的生活情境中,極大地激發(fā)了學(xué)生的學(xué)習(xí)欲望。學(xué)生很快地按要求用兩種不同的方法列出算式,并且能夠輕而易舉地證明兩式相等。接著要求學(xué)生通過觀察這個等式看看能否發(fā)現(xiàn)什么規(guī)律。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的`研究機會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學(xué)生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。這樣既培養(yǎng)了學(xué)生的猜想能力,又培養(yǎng)了學(xué)生驗證猜想的能力。學(xué)生通過自主探索去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,主體性得到了充分的發(fā)揮。
同時,我還注重學(xué)生的合作與交流,多向互動。倡導(dǎo)課堂教學(xué)的動態(tài)生成是新課程標(biāo)準(zhǔn)的重要理念。在數(shù)學(xué)學(xué)習(xí)中,每個學(xué)生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學(xué)生在數(shù)學(xué)學(xué)習(xí)中得到不同的發(fā)展,我在本課教學(xué)中立足通過生生、師生之間多向互動,特別是通過學(xué)生之間的互相啟發(fā)與補充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構(gòu)。學(xué)生在這樣一個開放的環(huán)境中博采眾長,共同經(jīng)歷猜想、驗證、歸納知識的形成過程,共同體驗成功的快樂。既培養(yǎng)了學(xué)生的問題意識,又拓寬了學(xué)生思維能力,學(xué)生也學(xué)得積極主動。
應(yīng)用規(guī)律,解決實際問題是數(shù)學(xué)學(xué)習(xí)的目的所在。在練習(xí)題型的設(shè)計上,有搶答(填空)題、判斷題、連線題、簡算題和拓展題,它們并不孤立,而是有機地聯(lián)系在一起,由基本題到變式題,由一般題到綜合題,有一定的梯度和廣度。使學(xué)生逐步加深認(rèn)識,在弄清算理的基礎(chǔ)上,學(xué)生能根據(jù)題目的特點,靈活地運用所學(xué)知識進行簡便運算和拓展練習(xí)。不僅要求學(xué)生會順向應(yīng)用乘法分配律,而且還要求學(xué)生會反向應(yīng)用。通過正反應(yīng)用的練習(xí),加深學(xué)生對乘法分配律的理解。從課堂反饋來看,學(xué)生熱情較高,能夠?qū)W以致用,知識掌握的牢固。學(xué)生通過自己的努力以及和同學(xué)的交流合作,解題速度和準(zhǔn)確性都很理想。
本節(jié)課有一定的亮點,但其中出現(xiàn)了不少問題:學(xué)生參與的積極性沒有預(yù)想中那么高。可能與我相對缺乏激勵性語言有關(guān)。也有可能今天的題材學(xué)生不太感興趣。以后注意,學(xué)生不感興趣的材料,教師應(yīng)該想辦法使呈現(xiàn)的這個材料變得能讓學(xué)生感興趣。另外,在回答問題時,個別學(xué)生的語言不夠流利、準(zhǔn)確。對乘法分配律的敘述稍顯羅嗦,不夠堅定、自信。在這方面有待今后加強訓(xùn)練和提高。
乘法分配律教學(xué)反思4
乘法分配律是繼乘法交換律、乘法結(jié)合律之后的新的運算定律,在算術(shù)理論中又叫乘法對加法的分配性質(zhì),由于它不同于乘法交換律和結(jié)合律是單一的運算。
從某種程度上來說,其抽象程度要高一些,因此,對學(xué)生而言,難度偏大,是計算的一個難點。因為它不僅僅是的乘法運算,還涉及到加法運算。這節(jié)課劉老師教學(xué)目標(biāo)定位準(zhǔn)確,沒有把目標(biāo)定位局限于探索理解乘法分配律,而是又引導(dǎo)學(xué)生應(yīng)用乘法分配律進行了簡便計算,通過學(xué)生與學(xué)生之間的互相啟發(fā)與補充,老師的及時點撥,實現(xiàn)對“乘法分配律”這一運算定律的主動建構(gòu)。整節(jié)課的學(xué)習(xí)氛圍輕松愉悅、學(xué)生思維活躍、教學(xué)效果非常好;就瓿山虒W(xué)任務(wù)。
劉老師對本課的教學(xué)設(shè)計很科學(xué),思路清晰,發(fā)現(xiàn)問題——觀察比較——舉例驗證——歸納規(guī)律——運用規(guī)律,讓學(xué)生經(jīng)歷了從具體到抽象,再由抽象到具體的知識推理方法,這節(jié)課不僅教會了乘法分配律,更教會了學(xué)生一種數(shù)學(xué)思想和數(shù)學(xué)方法,這也正是新課標(biāo)強調(diào)的對學(xué)生其中兩基培養(yǎng)的體現(xiàn)。
一、讓學(xué)生從生活實例去理解乘法分配律
一共25個小組參加植樹活動,每組里8人負(fù)責(zé)挖坑和種樹,4人負(fù)責(zé)抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)?8+6)個25更能凸顯出應(yīng)用乘法分配律后帶來的方便,也為乘法分配律的應(yīng)用打下伏筆和基礎(chǔ)。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學(xué)生理解帶來的困難。
通過引入解決問題讓學(xué)生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關(guān)系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機會
借助對同一實際問題的.不同解決方法讓學(xué)生體會乘法分配律的合理性。這是生活中遇到過的,學(xué)生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。
二、突破乘法分配律的教學(xué)難點
讓學(xué)生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學(xué)生親歷規(guī)律形成的科學(xué)過程設(shè)計中,不著痕跡的讓學(xué)生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學(xué)思想和方法。
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變
形的能力是教學(xué)的難點。為了突破這個教學(xué)難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負(fù)責(zé),人負(fù)責(zé)。一共有多少同學(xué)參加這次植樹活動?
學(xué)生主動去設(shè)計、解決,調(diào)動學(xué)生的積極性。讓學(xué)生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學(xué)生,發(fā)揮學(xué)生的主體性,通過去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。
當(dāng)然,對乘法分配律的意義還需做到更式形結(jié)合解釋,那就更有利于模型的建立。
建議:在教學(xué)中不僅要注意乘法分配律的外形結(jié)構(gòu),更要注重其內(nèi)涵。如兩個算式為什么會相等?缺乏從乘法意義的角度進行理解。在理解這一概念時,尤其要抓住關(guān)鍵詞“分別”加以分析,以此深化對數(shù)學(xué)模型的理解。否則,象38×99+38這樣的形式,就會成為學(xué)生練習(xí)中的攔路虎。
乘法分配律教學(xué)反思5
教材提供了這樣一個主體圖:春季里,同學(xué)們開展植樹活動,一共有25個小組,每組里4人負(fù)責(zé)挖坑、種樹,2人負(fù)責(zé)抬水、澆樹。需要解決的問題是:一共有多少人參加植樹活動?學(xué)生會用兩種不同的方法分別列出算式,接著通過計算發(fā)現(xiàn),兩個算式可以用=連接,即25(4+2)=254+252,從而通過比較等號兩邊兩個算式的不同與相同,概括出乘法分配律。當(dāng)我在一個班按照此教學(xué)設(shè)計教學(xué)后,我發(fā)現(xiàn)效果并不理想,表現(xiàn)有兩點:
、儆行⿲W(xué)生只是機械的記憶了乘法分配律的.公式,例如看到3544不能想到3540+354;
、谟捎跊]有真正理解乘法分配律的內(nèi)涵,所以完全不能理解其逆應(yīng)用以及當(dāng)兩個數(shù)的差乘一個數(shù)時應(yīng)用乘法分配律。如:他們認(rèn)為6464+3664(64+36)64;265(105-5)=265105-2655。
針對此情況,我重新設(shè)計了教案。增加了一個問題:負(fù)責(zé)挖坑、種樹的同學(xué)比負(fù)責(zé)抬水、澆水的同學(xué)多多少人?這樣學(xué)生又列出另外兩個算式,通過計算后用等號連接: 25(4-2)=254-252,接下來,我引導(dǎo)學(xué)生觀察、對比兩組算式,充分地去發(fā)現(xiàn)相同點與不同點。這樣一來,促使了學(xué)生去尋找事物之間的聯(lián)系,抓住本質(zhì),尋找共同點,促進交流,順利地實現(xiàn)了自我構(gòu)建和知識創(chuàng)造。學(xué)生的發(fā)現(xiàn)自然也就更豐富、更有深度了:無論是兩個數(shù)的和還是兩個數(shù)的差去乘一位數(shù),都可以先把他們與這個數(shù)分別相乘,再相加或者再相減。此外,我還引導(dǎo)學(xué)生從右到左的觀察等式,嘗試用乘法的意義去理解乘法分配律,即:4個25加2個25就等于(4+2)個25,4個25減2個25就等于(4-2)個25,這樣幫助學(xué)生突破乘法分配律逆應(yīng)用這個教學(xué)難點。
我通過對兩個班不同的教學(xué)設(shè)計,感受到:認(rèn)真鉆研教材,多動心思,深入挖掘教材中的寶貴資源,會使教材的內(nèi)涵更有廣度和深度,也為培養(yǎng)和發(fā)展學(xué)生思維的靈活性,提供了更廣闊的空間。
乘法分配律教學(xué)反思6
乘法的分配律學(xué)生在本冊書中是接觸過的。譬如第42頁的應(yīng)用題第7題,其中就滲透了乘法的分配律。在數(shù)學(xué)一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學(xué)生理解。
一、抓住重點。讓學(xué)生理解乘法分配律的意義。
教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運算律。這樣的安排,便于學(xué)生經(jīng)歷觀察、分析、比較和根據(jù)的過程。能使學(xué)生在合作交流的過程中,對簡潔分配律的認(rèn)識由感性逐步上升到理性。教學(xué)用書上寫道:教學(xué)的重點和關(guān)鍵應(yīng)是引導(dǎo)學(xué)生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。
在教學(xué)時,我是按照如上的步驟進行教學(xué)的。可是在我引導(dǎo)學(xué)生把算式寫成等式的時候讓學(xué)生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學(xué)生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進行聯(lián)系。根本沒有從數(shù)字上面去進行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學(xué)生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學(xué)生也還是無法用語言來表達這一規(guī)律。場面一時之間很冷,后來我只好直接讓學(xué)生用字母來表示,變化為這樣的形式之后,有很多的學(xué)生都能夠?qū)懗鰜怼?/p>
我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經(jīng)發(fā)現(xiàn)我們班上的學(xué)生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學(xué)中出現(xiàn)了問題。這些都要一一地去分析。
總之,這個關(guān)鍵今天并沒有完成好。
二、考慮學(xué)生的學(xué)習(xí)情況,尊重他們的主觀感受。
在引導(dǎo)學(xué)生把兩道算式拼成一道等式之后,我讓學(xué)生交流,結(jié)果學(xué)生給出了兩種(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的`左邊,是為了方便學(xué)生對乘法分配律的意義的理解。我認(rèn)為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發(fā),那么兩種方式其實都是可以的。所以在用字母來表達時,我們班的同學(xué)也有了兩種的表達方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板書在黑板上,只是在規(guī)范的那一道上面畫了個星,告訴學(xué)生,乘法分配律的表示一般性采用的是這一條。
三、練習(xí)中注意乘法分配律的變式。
乘法分配律的意義是用,是為了計算的簡便。所以,在練習(xí)中我注意讓學(xué)生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74。一定要學(xué)生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學(xué)生在完成想想做做第5題的時候,一大半的學(xué)生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習(xí)時也是一樣。
今天教學(xué)了運算律——乘法分配律,對于例題的解決,學(xué)生能列出不同的算式,45x5+65x5和(45+65)x5,通過各自的計算得出計算結(jié)果相同,然后把這兩條算式寫成等式45x5+65x5=(45+65)x5,學(xué)生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學(xué)生再仿寫了幾個算式后讓學(xué)生觀察等式總結(jié)自己的發(fā)現(xiàn),學(xué)生會用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個學(xué)生把第3小題填錯,其實包括后面的練習(xí)中,把AxC+BxC改寫成(A+B)xC的正確率要比把(A+B)xC改寫成AxC+BxC的正確率高,可能還是學(xué)生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學(xué)會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。
想想做做第2題的第3小題74x(21+1)和74x21+74部分學(xué)生沒有發(fā)現(xiàn)它們是相等的,我讓認(rèn)為相等的學(xué)生表述理由,學(xué)生能把算式改寫成74x21+74x1再運用乘法分配律變形成74x(21+1),學(xué)生理解后我補充77x99+77=□(□○□)讓學(xué)生填空,完成情況好多了,在拓展練習(xí)時補充了AxB+B=□(□○□)和AxB+B=□(□○□)讓學(xué)生進一步真正理解乘法分配律的意義。但學(xué)生在完成想想做做第5題時,學(xué)生多習(xí)慣列式48x3+48x2來計算,卻不能靈活運用所學(xué)知識列成(3+2)x48來計算,雖然運用乘法分配律進行簡便計算是下一課的學(xué)習(xí)內(nèi)容,但我也由此反思出我教學(xué)的不足之處,在例題教學(xué)時只關(guān)注了得出等式,卻忽略了讓學(xué)生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補上了這一點。
乘法分配律教學(xué)反思7
乘法分配律的教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個定律中的難點。故而,對于乘法分配律的教學(xué),我沒有把重點放在數(shù)學(xué)語言的表達上,而是把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……。
現(xiàn)在的課程改革重點之一就是如何促進學(xué)生學(xué)習(xí)方式的變革,讓他們可以用自己的眼睛去觀察,用自己的腦子去思考,用自己的語言去表述,成為一個獨特的個體。并強調(diào)從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進行解釋和應(yīng)用的過程,進而使學(xué)生獲得對數(shù)學(xué)理解的同時,在思維能力方面得到進步和發(fā)展。本著對新課標(biāo)的學(xué)習(xí)和認(rèn)識,我對“乘法分配律”這一堂課在實踐理念方面作如下的探索。
1.在對本節(jié)課的教學(xué)目標(biāo)上,我定位在:
。1)通過學(xué)生比賽列式計算解決情景問題后,觀察、比較、分析理解乘法分配律的含義,教師引導(dǎo)學(xué)生概括出乘法分配律的內(nèi)容。
。2)初步感受乘法分配律能使一些計算簡便。(3)培養(yǎng)學(xué)生分析、推理、概括的思維能力。
2.在本節(jié)課的教學(xué)過程的設(shè)計上,我盡量想體現(xiàn)新課標(biāo)的一些理念。注重從學(xué)生的實際出發(fā),把數(shù)學(xué)知識和實際生活緊密聯(lián)系起來,讓學(xué)生在體驗中學(xué)到知識。在課的開始,我通過口頭講故事創(chuàng)設(shè)情境“森林超市”,“招聘廣告”,設(shè)置懸念,激發(fā)學(xué)生的學(xué)習(xí)欲望和學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣:你們?nèi)ミ^森林超市嗎?想不想去看一看?小狗開了一家森林超市,想通過招聘廣告應(yīng)聘一名營業(yè)員呢!我們一起來看一看。小兔、小豬看到廣告后,前來應(yīng)聘,小熊決定進行考試過三關(guān),擇優(yōu)錄取。小狗還想邀請同學(xué)們一起參加這個活動,你們愿意嗎?學(xué)生已迫不及待地說想。
接著我分別讓班上的一組、二組分別和三組、四組扮演小豬和小兔進行解題比賽,學(xué)生學(xué)生們積極性極高并爭先恐后地做題,同時讓學(xué)生說說你是怎么做的?學(xué)生嘗試通過不同的方法先后得出:
(1)50×8+125×8 =400+1000=1400(元),(50+125)×8=175×8=1400(元);
。2):(55+45)×5 =100 ×5 =500(元),55×5+45×5=275+225=500(元);
。3)15×4+3×4 =60+12=72(元),(15+3)×4=18×4=72(元)。
此時教師讓學(xué)生觀察通過不同的計算方法得到了相同的結(jié)果,這兩個算式用“=”連接。通過不同計算得到相同的結(jié)果,讓學(xué)生從中初步感受了乘法分配律的模型。為了讓學(xué)生切實體會生活中確實有乘法分配律的知識。在此我又設(shè)置了一個問題:上面兩題的結(jié)果,左邊和右邊的式子也有相同的.形式,這里是否存在著規(guī)律?讓學(xué)生帶著一點疑惑,又急著想證明的愿望繼續(xù)探究。這時學(xué)生心中已具有了乘法分配律的模型。當(dāng)學(xué)生有了上面的真實感受,讓學(xué)生列舉出類似的等式已水到渠成。讓學(xué)生觀察剛才得到的一系列等式,小組討論:從這些等式中你發(fā)現(xiàn)了什么規(guī)律?并要求同桌嘗試合作學(xué)習(xí)進行一人任意找三個數(shù)寫出等號左邊的式子讓另一個寫出等號右邊的式子,幾題過后再交換寫式子,讓他們親自感受乘法分配律,從而概括出乘法分配律。
3、在本課的練習(xí)設(shè)計上,我力求有針對性,有坡度,同時也注意知識的延伸。針對平時學(xué)生練習(xí)中的錯誤,在判斷題中我安排了(25×7)×4=25×4+7×4,讓學(xué)生通過爭論明白當(dāng)(25×7)×4時用乘法結(jié)合律簡算;當(dāng)(25+7)×4時用乘法分配律簡算。在填空題目中,我設(shè)計了
、伲10+7)×6=()×6 +()×6 ;
、8×(125+9)=8×()+8×();
、7×48+7×52=()×(+)
通過練習(xí)讓學(xué)生更深入地理解乘法分配律的概念,也為后面利用乘法分配律進行簡算打下伏筆。
總之,在本堂課中新的教學(xué)理念有所體現(xiàn),但在具體的操作中還缺乏成熟的思考,對學(xué)生的積極性沒有充分調(diào)動起來,而且在生活情境的創(chuàng)設(shè)中對情境的趣味性、興趣性、情境性不能很好的體現(xiàn),情景創(chuàng)設(shè)題目有點多,需減少一題,留給學(xué)生思考的時間還不夠。這一系列問題有待我在今后的教學(xué)過程中不斷的改進和提高。最后,衷心地感謝各位領(lǐng)導(dǎo)的指導(dǎo)并提出建議!
乘法分配律教學(xué)反思8
記得曾經(jīng)在教孩子們乘法分配律的時候,總是遇到很多問題,對于乘法分配律的應(yīng)用不是很好,吐槽了很久,現(xiàn)在在教二年級的孩子的時候,我發(fā)現(xiàn)其實在二年級已經(jīng)接觸了這方面的知識,只是沒有進行歸納而已。
二年級的課本上有這樣一種題型,如:
。1)6x9=5x9+9=7x9—9=
(2)9x4=9x3+9=
9x5—9=
。3)8x9=7x9+9=9x9—9=
先計算,你發(fā)現(xiàn)了什么?
我一看到這題,我就想到乘法分配律,但是在二年級剛接觸乘法,不可能就跟他們講乘法分配律。我在上練習(xí)課的時候我特意把這題拿出來講了,我想如果這里學(xué)生題解好了,對以后學(xué)習(xí)乘法分配律是有幫助的'。在課堂上,我先讓學(xué)生自己完成,第一題的第2,3個算式,他們是按照運算順序來計算的,先算乘法,再算加法或減法,這個沒有難度,而且他們根據(jù)第一題,后面的兩題都不要做,直接寫出了結(jié)果,每一題中的3個算式的結(jié)果是一樣的。我就問他們,為什么會出現(xiàn)這樣情況?學(xué)生就答不上來。我就舉了個示范,6x9是6個9相加,5x9+9是5個9相加再加1個9,5個9加1個9是6個9,6個9相加就是6x9,所以5x9+9=6x9=54。學(xué)習(xí)了乘法的意義,對于這個他們能理解,只是想不到而已,那么7x9—9=,可以交給孩子們完成,第(2)(3)題我也是讓學(xué)生來說一說。另外我還補充了一題,6x7—14,我發(fā)現(xiàn)竟然有孩子會想到14就是2個7,6個7減去2個7就是4個7,就是4x7=28。特別棒!
乘法分配律教學(xué)反思9
關(guān)于乘法分配律早在上學(xué)期和本冊教材的前幾個單元的練習(xí)題中就有所滲透,雖然在當(dāng)時沒有揭示,但學(xué)生已經(jīng)從乘法的意義角度初步進行了感知,以及初步體會了它可以使計算簡便。今天的教學(xué)就建立在這樣的基礎(chǔ)之上,上午第一節(jié)課我在自己班上,后來第二節(jié)課去聽了一根木頭老師的課,現(xiàn)在進行對比,談一談自己的感受:
首先,值得向一根木頭老師學(xué)習(xí)的是,學(xué)生的預(yù)習(xí)工作很到位。課前,學(xué)生就已經(jīng)解決了“想想做做”第3、4題,學(xué)生通過解決第三題用兩種方法求長方形的周長,既鞏固了舊知,而且將原來的認(rèn)識提升了,從解決實際問題的角度進一步感受了乘法分配律。而第4題通過計算比較,突現(xiàn)了乘法分配律可以使計算簡便,體現(xiàn)了應(yīng)用價值。我在課前沒有安排這樣的預(yù)習(xí),因此課上的時間比較倉促。
其次,我在學(xué)生解決完例題的問題后,還讓學(xué)生提了減法的問題,這樣做的目的是讓學(xué)生初步感受對于(a—b)×c=a×b—a×c這種類型的題也同樣適合,既擴展了學(xué)生的知識面,同時又為明天學(xué)習(xí)簡便運算鋪墊。
最后,我覺得在指導(dǎo)學(xué)生在觀察比較65×5+45×5和(65+45)×5的聯(lián)系和區(qū)別時,可以指導(dǎo)學(xué)生從數(shù)和運算符號兩個角度觀察,學(xué)生得出結(jié)論后,其實已經(jīng)感知到了算式的特點,然后讓學(xué)生用自己的方式創(chuàng)造相同類型的等式,可以是數(shù)、字母、圖形的等,值得欣慰的是學(xué)生能用各種方式正確表示出來,然后再揭示數(shù)學(xué)語言,學(xué)生的認(rèn)知產(chǎn)生飛躍。
不足的是,學(xué)生很難用自己的語言表達乘法分配律的含義,小組交流時,有些同寫還是充當(dāng)旁觀者的角色,有待于教師科學(xué)地引導(dǎo)。
《乘法分配律》教學(xué)反思3
乘法分配律是一節(jié)比較抽象的概念課,教師可以根據(jù)教學(xué)內(nèi)容的特點,為學(xué)生提供多種探究方法,激發(fā)學(xué)生的自主意識。
具體是這樣設(shè)計的:先創(chuàng)設(shè)佳樂超市的情景調(diào)動學(xué)生的學(xué)習(xí)積極性,通過買“3套運動服,每件上衣21元,每條褲子10元,一共花多少元?”列出兩種不同的式子,他們確實能夠體會到兩個不同的算式具有相等的關(guān)系。這是第一步:通過資料獲取繼續(xù)研究的'信息。(雖然所得的信息很簡單,只是幾組具有相等關(guān)系的算式,但這是學(xué)生通過活動自己獲取的,學(xué)生對于它們感到熟悉和親切,用他們作為繼續(xù)研究的對象,能夠調(diào)動學(xué)生的參與意識。)
第二步:觀察算式,尋找規(guī)律。讓學(xué)生通過討論初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,教師不要急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗證。這里既培養(yǎng)了學(xué)生的猜測能力,又培養(yǎng)了學(xué)生驗證猜測的能力。
第三步:應(yīng)用規(guī)律,解決實際問題。通過對于實際問題的解決,進一步拓寬乘法分配律。這一階段,既是學(xué)生鞏固和擴大知識,又是吸收內(nèi)化知識的階段,同時還是開發(fā)學(xué)生創(chuàng)新思維的重要階段。
乘法分配律教學(xué)反思10
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生較難理解與敘述的定律,是一節(jié)比較抽象的概念課。我根據(jù)教學(xué)內(nèi)容的特點,為學(xué)生提供多種探究方法,激發(fā)學(xué)生的自主意識。
具體設(shè)計:先創(chuàng)設(shè)兔子吃蘿卜的情景,調(diào)動學(xué)生的學(xué)習(xí)積極性。
通過買“老伯伯養(yǎng)了10只猴子,每只兔子早上吃4個蘿卜,晚上要吃3只蘿卜這些猴子一天共要吃掉多少個蘿卜?”列出兩種不同的式子,讓學(xué)生通過觀察兩種不同的計算方法也得到了相同的結(jié)果,這兩個算式也可用“=”連接。
然后讓學(xué)生觀察這兩個等式的特點,仿造上面的等式填空。
。4+5)×25=(14+25)×5=(37+125)×8=。
再讓學(xué)生觀察這幾組算式,等號左邊的算式有什么相同點?等號右邊的算式有什么相同點?等號左邊算式中的兩個加數(shù)與右邊算式中的什么數(shù)有關(guān)系?左邊算式中的一個因數(shù)與右邊算式中的哪個數(shù)有關(guān)系?使之讓學(xué)生從中感受了乘法分配律的模型。
從而引出乘法分配律的概念:“兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變!庇米帜感问奖硎荆海╝+b)×c=a×c+b×c,他們確實能夠體會到兩個不同的算式具有相等的關(guān)系。
第一步:通過資料獲取繼續(xù)研究的信息。
雖然所得的信息很簡單,只是幾組具有相等關(guān)系的算式,但這是學(xué)生通過活動自己獲取的,學(xué)生對于它們感到熟悉和親切,用他們作為繼續(xù)研究的對象,能夠調(diào)動學(xué)生的參與意識。
第二步:觀察算式,尋找規(guī)律。讓學(xué)生通過討論初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的'兩個算式都是相等的?此時,我不急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗證。這里既培養(yǎng)了學(xué)生的猜測能力,又培養(yǎng)了學(xué)生驗證猜測的能力。
第三步:應(yīng)用規(guī)律,解決實際問題。通過對于實際問題的解決,進一步拓寬乘法分配律。這一階段,既是學(xué)生鞏固和擴大知識,又是吸收內(nèi)化知識的階段,同時還是開發(fā)學(xué)生創(chuàng)新思維的重要階段。
本節(jié)課的可取之處:
1、為學(xué)生提供了充分的數(shù)學(xué)活動機會,把學(xué)生的活動定位在感悟和體驗上,引導(dǎo)學(xué)生用數(shù)學(xué)思維方式去發(fā)現(xiàn)、去探索。
2、使學(xué)生在辨析與爭論中,自然而然地完成猜測與驗證,形成清晰的認(rèn)識,在學(xué)生舉例中使學(xué)生感到乘法分配律的一個重要因素,最后由特殊到一般總結(jié)字母公式。
3、將模仿式的學(xué)習(xí)變?yōu)樘骄渴降膶W(xué)習(xí)。
4、在本課的練習(xí)設(shè)計上,能力求有針對性,有坡度,同時也注意知識的延伸。
本節(jié)課的不足之處:
1、習(xí)題在安排上在充分理解《乘法分配律》的基礎(chǔ)上,可以再安排一些具有思考性的題目,如78×99+78=78×(99+1),為后面的簡便運算作伏筆,這樣教學(xué)效果會更好。
2、在數(shù)學(xué)術(shù)語上還得反復(fù)推敲,以達到準(zhǔn)確無誤。
3、本堂課中新的教學(xué)理念有所體現(xiàn),但在具體的操作中還缺乏成熟的思考,對學(xué)生的積極性沒有充分調(diào)動起來。
我會堅持不斷學(xué)習(xí)理論知識,多聽課多向前輩們請教,切實提高業(yè)務(wù)能力。
乘法分配律教學(xué)反思11
乘法的分配律學(xué)生在本冊書中是接觸過的。譬如第42頁的應(yīng)用題第7題,其中就滲透了乘法的分配律。在數(shù)學(xué)一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學(xué)生理解。
一、抓住重點。讓學(xué)生理解乘法分配律的意義。
在教學(xué)時,我是按照如上的步驟進行教學(xué)的?墒窃谖乙龑(dǎo)學(xué)生把算式寫成等式的時候讓學(xué)生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學(xué)生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進行聯(lián)系。根本沒有從數(shù)字上面去進行分析?梢哉f,局限在原先的思維中,而沒有跳出來看。而讓學(xué)生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學(xué)生也還是無法用語言來表達這一規(guī)律。場面一時之間很冷,后來我只好直接讓學(xué)生用字母來表示,變化為這樣的形式之后,有很多的學(xué)生都能夠?qū)懗鰜怼?/p>
我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經(jīng)發(fā)現(xiàn)我們班上的學(xué)生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學(xué)中出現(xiàn)了問題。這些都要一一地去分析。
二、考慮學(xué)生的學(xué)習(xí)情況,尊重他們的主觀感受。
在引導(dǎo)學(xué)生把兩道算式拼成一道等式之后,我讓學(xué)生交流,結(jié)果學(xué)生給出了兩種(65+45)×5=65×5+45×5.和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學(xué)生對乘法分配律的意義的理解。我認(rèn)為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發(fā),那么兩種方式其實都是可以的。所以在用字母來表達時,我們班的同學(xué)也有了兩種的表達方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。
三、練習(xí)中注意乘法分配律的變式。
乘法分配律的意義是用,是為了計算的簡便。所以,在練習(xí)中我注意讓學(xué)生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1) 和74×20+74.一定要學(xué)生說清楚括號中的1是從哪兒來的.。但是簡便的思想滲透得還很不夠。學(xué)生在完成想想做做第5題的時候,一大半的學(xué)生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習(xí)時也是一樣。
今天教學(xué)了運算律——乘法分配律,對于例題的解決,學(xué)生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計算得出計算結(jié)果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學(xué)生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學(xué)生再仿寫了幾個算式后讓學(xué)生觀察等式總結(jié)自己的發(fā)現(xiàn),學(xué)生會用字母表示出這一規(guī)律,但用語言表述有困難了。
乘法分配律教學(xué)反思12
乘法分配律是繼乘法交換律、乘法結(jié)合律之后的新的運算定律,在算術(shù)理論中又叫乘法對加法的分配性質(zhì),由于它不同于乘法交換律和結(jié)合律是單一的運算。從某種程度上來說,其抽象程度要高一些,因此,對學(xué)生而言,難度偏大,如何使學(xué)生掌握得更好,記得更牢?我想學(xué)生自己獲得的知識要比灌輸?shù)脕淼挠浀酶。因此我在一開始設(shè)計了一個購物的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進生活,開始學(xué)習(xí)新知。在教學(xué)過程中有坡度的讓學(xué)生在不斷的感悟、體驗中理乘法分配律,從而自己概括出乘法分配律。我是這樣設(shè)計:
一、讓學(xué)生從生活實例去理解乘法分配律
一共25個小組參加植樹活動,每組里8人負(fù)責(zé)挖坑和種樹,4人負(fù)責(zé)抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)椋?+6)個25更能凸顯出應(yīng)用乘法分配律后帶來的方便,也為乘法分配律的應(yīng)用打下伏筆和基礎(chǔ)。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學(xué)生理解帶來的困難。
通過引入解決問題讓學(xué)生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關(guān)系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的'研究機會
借助對同一實際問題的不同解決方法讓學(xué)生體會乘法分配律的合理性。這是生活中遇到過的,學(xué)生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。
二、突破乘法分配律的教學(xué)難點
讓學(xué)生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學(xué)生親歷規(guī)律形成的科學(xué)過程設(shè)計中,不著痕跡的讓學(xué)生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學(xué)思想和方法。
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變形的能力是教學(xué)的難點。為了突破這個教學(xué)難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負(fù)責(zé),人負(fù)責(zé)。一共有多少同學(xué)參加這次植樹活動?
學(xué)生主動去設(shè)計、解決,調(diào)動學(xué)生的積極性。讓學(xué)生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學(xué)生,發(fā)揮學(xué)生的主體性,通過去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。
當(dāng)然,對乘法分配律的意義還需做到更式形結(jié)合解釋,那就更有利于模型的建立。
乘法分配律教學(xué)反思是必要的,所以老師們一定也要好好地去對待。不斷的反思,才可以促進不斷的進步。以上面的文章,希望與各位同行們共同進步。
乘法分配律教學(xué)反思13
本節(jié)課主要讓學(xué)生充分感知并歸納乘法分配律,理解其意義。教學(xué)中,我從解決實際問題(買衣服)引入,通過交流兩種解法,把兩個算式寫成一個等式,并找出它們的聯(lián)系。讓學(xué)生初步感知乘法分配律的基礎(chǔ)上再讓學(xué)生舉出幾組類似的算式,通過計算得出等式。在充分感知的基礎(chǔ)上引導(dǎo)學(xué)生比較這幾組等式,發(fā)現(xiàn)有什么規(guī)律?這里我化了一些時間,我發(fā)現(xiàn)學(xué)生在用語言文字?jǐn)⑹龇矫嬗行├щy,新教材上也沒有要求,因此,只要學(xué)生意思說到即可,后來,我提了這樣一個問題,你能用自己喜歡的方式來表示你發(fā)現(xiàn)的規(guī)律嗎?學(xué)生立即活躍起來,紛紛用自己喜歡的方式來闡明自己發(fā)現(xiàn)的規(guī)律:有用字母的,有用符號的,大部分學(xué)生會說,沒問題。對于應(yīng)用這一乘法分配律進行后面的練習(xí)還可以。如:書上第55頁的第5題,學(xué)生都想到用簡便方法去列式計算。整節(jié)課,學(xué)生還是學(xué)的比較輕松的。
關(guān)于乘法分配律早在上學(xué)期和本冊教材的前幾個單元的練習(xí)題中就有所滲透,雖然在當(dāng)時沒有揭示,但學(xué)生已經(jīng)從乘法的意義角度初步進行了感知,以及初步體會了它可以使計算簡便。今天的教學(xué)就建立在這樣的'基礎(chǔ)之上,上午第一節(jié)課我在自己班上,后來第二節(jié)課去聽了一根木頭老師的課,現(xiàn)在進行對比,談一談自己的感受:
首先,值得向一根木頭老師學(xué)習(xí)的是,學(xué)生的預(yù)習(xí)工作很到位。課前,學(xué)生就已經(jīng)解決了“想想做做”第3、4題,學(xué)生通過解決第三題用兩種方法求長方形的周長,既鞏固了舊知,而且將原來的認(rèn)識提升了,從解決實際問題的角度進一步感受了乘法分配律。而第4題通過計算比較,突現(xiàn)了乘法分配律可以使計算簡便,體現(xiàn)了應(yīng)用價值。我在課前沒有安排這樣的預(yù)習(xí),因此課上的時間比較倉促。
其次,我在學(xué)生解決完例題的問題后,還讓學(xué)生提了減法的問題,這樣做的目的是讓學(xué)生初步感受對于(a—b)×c=a×b—a×c這種類型的題也同樣適合,既擴展了學(xué)生的知識面,同時又為明天學(xué)習(xí)簡便運算鋪墊。
最后,我覺得在指導(dǎo)學(xué)生在觀察比較65×5+45×5和(65+45)×5的聯(lián)系和區(qū)別時,可以指導(dǎo)學(xué)生從數(shù)和運算符號兩個角度觀察,學(xué)生得出結(jié)論后,其實已經(jīng)感知到了算式的特點,然后讓學(xué)生用自己的方式創(chuàng)造相同類型的等式,可以是數(shù)、字母、圖形的等,值得欣慰的是學(xué)生能用各種方式正確表示出來,然后再揭示數(shù)學(xué)語言,學(xué)生的認(rèn)知產(chǎn)生飛躍。
不足的是,學(xué)生很難用自己的語言表達乘法分配律的含義,小組交流時,有些同寫還是充當(dāng)旁觀者的角色,有待于教師科學(xué)地引導(dǎo)。
乘法分配律教學(xué)反思14
本節(jié)課的教學(xué)我主要以幾何直觀為切入點,引導(dǎo)學(xué)生通過畫一畫,算一算等學(xué)習(xí)活動,小組合作,共同經(jīng)歷乘法分配的探究過程,借助圖形探知、理解乘法分配律。
1、問題情境的創(chuàng)設(shè)需更貼近學(xué)生的生活。
試講過后與大家的感覺一樣,學(xué)生對設(shè)計草莓大棚的這個話題不是特別感興趣,接受工作室友們提出的寶貴意見后,想把情境創(chuàng)設(shè)改為設(shè)計學(xué)校的操場。由于學(xué)校里孩子們數(shù)量每年都在增加,孩子們喜歡的小操場越來越擠,想要擴建這個長方形的小操場,怎么辦呢?這個話題與孩子們的生活息息相關(guān),應(yīng)該比上一次設(shè)計的話題更容易引起他們的關(guān)注。
2、教學(xué)的設(shè)計要尊重已有的知識經(jīng)驗。
本節(jié)課設(shè)計一始,所需的計算方法與原來學(xué)過的計算長方形面積有關(guān)。長方形的面積長乘寬,即使個別學(xué)生忘記也很容易喚醒。我鼓勵學(xué)生大膽去猜想, 在計算之前先要在頭腦中勾勒出長方形的模樣,激發(fā)學(xué)生在畫圖中梳理題中的數(shù)學(xué)信息。接下來的三次探究過程,先是教師設(shè)定長方形增加的長,再次是學(xué)生自己設(shè)定長度,再到后來自己設(shè)定三個量,給學(xué)生充分的想象和發(fā)揮空間,發(fā)揮學(xué)生主體的主動作用,即使學(xué)生在研究中遇到困難,有小組合作交流討論環(huán)節(jié)也使學(xué)生之間有了互相學(xué)習(xí)和提高的過程。
學(xué)生在已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在得出結(jié)論的過程中,有的同學(xué)用到了文字說明,也有同學(xué)是符號表示,還有的是字母表示,無論出現(xiàn)得出的哪種結(jié)論,老師都予以肯定和表揚,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。
在學(xué)生展示匯報的過程中,雖然字母表示的方法更清晰,大家更喜歡,但課后覺得能用文字表述其實是更難的一件事,對這樣的孩子應(yīng)該在課堂上再多給學(xué)生一些鼓勵與肯定,學(xué)生的學(xué)習(xí)興趣會更濃,他們學(xué)到的東西可能也會更多。
3、在具體操作中完成由具體到抽象的思維演練。
孩子們自己填寫的數(shù)字各不相同,在不同的計算方法和有不同的'計算結(jié)果中,使學(xué)生感受到大量在實例計算后,大膽地完成了由猜想到驗證的過程。猜想是科學(xué)發(fā)現(xiàn)的前奏。學(xué)生的學(xué)習(xí)活動中不能沒有猜想,否則,主體性探究活動便缺少了內(nèi)在的動力,自主學(xué)習(xí)的過程也成了失去目標(biāo)的無意義操作。接下來的舉例就成了驗證猜想的必需,無論猜想的結(jié)論是“是”還是“非”,學(xué)生的思維一直是活躍著的,對學(xué)生都是有意義的。這個過程是教會學(xué)生學(xué)習(xí)與掌握探索方法的過程,是培養(yǎng)學(xué)生學(xué)習(xí)品格的過程。
在研究的過程中,如何利用小組合作資源,把研究中遇到困難的,興趣保持不下去的同學(xué)的積極性再調(diào)動一下就更好了。
課堂學(xué)習(xí)的過程,一切以師生間,生生間建立的平等交流這個平臺才得以順得完成,教學(xué)過程是師生共創(chuàng)共生的過程,師生成為共同建構(gòu)學(xué)習(xí)的參與者。在上述的教學(xué)活動中,教師讓學(xué)生充分經(jīng)歷學(xué)習(xí)過程,調(diào)動學(xué)生學(xué)習(xí)的熱情:想象——猜想——舉例——驗證,在欣賞學(xué)生的“閃光”處給學(xué)生“點撥”。師生在課堂交流中才得以共同成長。
乘法分配律教學(xué)反思15
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律是四年級學(xué)習(xí)的重點,也是難點之一。也是一節(jié)比較抽象的概念課,教學(xué)時我根據(jù)教學(xué)內(nèi)容的特點,為學(xué)生提供了多種探究方法,激發(fā)了學(xué)生的自主意識。
上課時,我以輕松愉快的閑聊方式出示我們身邊最熟悉的教學(xué)資源,以教室地面引出長方形面積的計算,兩種方法解決問題,得出算式:(8+6)×2=8×2+6×2,從上面的觀察與分析中,你能發(fā)現(xiàn)什么規(guī)律?通過觀察算式,尋找規(guī)律。讓學(xué)生在討論中初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,我不是急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗證。學(xué)生興趣濃厚,這里既培養(yǎng)了學(xué)生的猜測能力,又培養(yǎng)了學(xué)生驗證猜測的能力。從而讓學(xué)生知道乘法分配律給大家計算帶來的便利。從而感受數(shù)學(xué)的美。
這堂課由具體到抽象,大多需要學(xué)生體驗得來,上下來感覺很好,學(xué)生很投入,似乎都掌握了,可在練習(xí)時還是發(fā)現(xiàn)了一些問題。如:學(xué)生在學(xué)習(xí)時知道“分別”的意思,也提醒大家注意,但在實際運用中,還是出現(xiàn)了漏乘的現(xiàn)象。針對這一現(xiàn)象我認(rèn)為在練習(xí)課時要加以改進。注重從學(xué)生的實際出發(fā),把數(shù)學(xué)知識和實際生活緊密聯(lián)系起來,讓學(xué)生在不斷的感悟和體驗中學(xué)習(xí)知識。
乘法分配律在乘法的運算定律中是一個比較難理解的定律,因此在上課前我作了充分的準(zhǔn)備。因為學(xué)生在三年級時已經(jīng)學(xué)過求長方形周長的兩種通過一節(jié)課的學(xué)習(xí),學(xué)生對乘法分配律的大致規(guī)律能理解,也能靈活運用,但是要求用語言來歸納或用字母表示乘法分配律的規(guī)律,有部分學(xué)生就感到很為難了。感覺他們只能意會不能言傳般。課本中關(guān)于乘法分配律只有一個植樹的例題,但是練習(xí)中有關(guān)乘法分配律的運用卻靈活而多變,學(xué)生們應(yīng)用起來有些不知所措,針對這種現(xiàn)狀,我把乘法分配律的運用進行了歸類,分別取個名字,讓學(xué)生能針對不同的題目能靈活應(yīng)用。
乘法分配律大致上有這樣三類:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要進行平均分配,都要和8相乘。不能只把其中一個數(shù)字與8相乘,這樣不公平,稱不上是平均分配法,學(xué)生印象很深刻,開始還有部分學(xué)生只選擇一個數(shù)與8相乘,歸納方法后學(xué)生都能正確應(yīng)用了。
二、提取公因數(shù)法。如:25*40+25*60=25*(40+60)解題關(guān)鍵:找準(zhǔn)兩個乘法式子中公有的因數(shù),提取出公因數(shù)后,剩下的另一個數(shù)字該相加還是該相減,看符號就能確定了。
三:拆分法。如:102*45=(100+2)*45=100*45+2*45這類題的關(guān)鍵在于觀察那個數(shù)字最接近整百數(shù),將它拆分成整百數(shù)加一個數(shù)或者整百數(shù)減去一個數(shù),再應(yīng)用懲罰的分配率進行簡算。有了歸類,學(xué)生再見到題目就能依據(jù)數(shù)字或運算符號的特征熟練進行乘法分配律的'簡算了。
以這個為切入點,從而比較順利地引入新課,正好那天是植樹節(jié)所以我又創(chuàng)讓“打比方”成為數(shù)學(xué)課堂的閃光點。
凡是教過小學(xué)數(shù)學(xué)乘法運算律的教師都會體會到“乘法分配律”是乘法運算律中最難掌握的。學(xué)生在做練習(xí)題中錯誤最多。所以課前我對教材進行了身隊深度的剖析和思考。最后想出了用打比方突破課堂難點。雖然我們的“比方”有時看來似乎有點不恰當(dāng),但是這種比方對開發(fā)學(xué)生的想象力,推理能力以及拓展思路竟達到了意想不到的效果。我是這樣做的:
我由解決問題引出乘法分配律的等式,但我沒有急于給學(xué)生灌注這叫乘法分配率,而是寫下了這樣一個式子;{姐姐+我}×媽媽=姐姐×媽媽+我×媽媽然后提問:“誰能解釋為什么我這樣寫嗎?思維活躍的學(xué)生馬上就會回答:“因為媽媽是你和姐姐共有的,所以你和姐姐都有資格和媽媽在一起!......學(xué)生們的學(xué)習(xí)興趣一下被調(diào)動起來了,他們明白了數(shù)學(xué)原來也是通俗易懂的。然后我再讓他們閱讀教材,給這個看似“不恰當(dāng)”的比方定性為“乘法分配率”。歸納整合為字母算式:(a+b)×c=a×c+b×c,這時我再此讓學(xué)生展開聯(lián)想,讓他們學(xué)著老金剛怒目在自己身邊和生活中進行舉例,學(xué)生很快舉出(上衣+褲子)×人=上衣×人+褲子×人,(鉛筆+圓珠筆)×本子=鉛筆×本子+圓珠筆×本子等例子等不是十分貼切,但卻富有情趣,孩子在編例子的同時,其實已把握了乘法分配律的特征,學(xué)生就不會出現(xiàn)(a+b)×c=a×c+b的錯誤,在生動活潑的“打比方”中,既帶給了學(xué)生體驗學(xué)習(xí)的快樂,又讓我們枯燥深奧的數(shù)學(xué)概念成為形象而具體的理解形成,這種教法我在教“乘法交換律”時也用到過,我在結(jié)尾時把它總結(jié)為“左右搬家”然后講了個鋪子搬家的故事,學(xué)生們在津津樂道的故事中,在形象貼切的“打比方”中學(xué)懂了數(shù)學(xué)知識,收到了良好的效果,真正使數(shù)學(xué)課堂貼近生活。
設(shè)了這樣一個情境,“一共有25個小組參加植樹 乘法分配律在乘法的運算定律中是一個比較難乘法分配律的教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個定律中的難點。對于乘法分配律的教學(xué),我沒有把重點放在數(shù)學(xué)語言的表達上,而是把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證。
以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習(xí)的需要,提出問題:共有多少名同學(xué)參加了這次植樹活動?通過兩種方法和算式的比較,使學(xué)生初步感知乘法分配律。
展示知識的發(fā)生過程,引導(dǎo)學(xué)生積極主動探究。先讓學(xué)生根據(jù)問題,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式,讓學(xué)生觀察,初步感知“乘法分配律”。然后要求學(xué)生照樣子說出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律。這樣學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力。
最后讓學(xué)生比較乘法交換律和結(jié)合律與分配率的最大區(qū)別,前者只在連乘的同一級運算中運用,后者是在兩級運算中運用,所以,看清題目是一級運算還是兩級運算對決定算法非常重要。這節(jié)課雖然成功引導(dǎo)學(xué)生發(fā)現(xiàn)了定律,但教完之后,在練習(xí)過程中還有部分學(xué)生掌握不好,在后一階段依然要加強練習(xí),邊練習(xí)邊總結(jié)算法,使學(xué)生達到熟能生巧的程度。
【乘法分配律教學(xué)反思】相關(guān)文章:
乘法分配律教學(xué)反思02-10
乘法分配律教學(xué)反思07-02
《乘法分配律》教學(xué)反思01-15
乘法分配律教學(xué)反思15篇11-11
《乘法分配律》教學(xué)反思15篇02-07
乘法分配律教學(xué)反思(15篇)02-12