分數(shù)除法的教學反思(15篇)
作為一名到崗不久的老師,我們都希望有一流的課堂教學能力,教學反思能很好的記錄下我們的課堂經(jīng)驗,那么教學反思應(yīng)該怎么寫才合適呢?下面是小編整理的分數(shù)除法的教學反思,歡迎閱讀,希望大家能夠喜歡。
分數(shù)除法的教學反思1
數(shù)學課程標準指出:有效的數(shù)學學習活動動手實踐、自主探索和合作交流是學生學習數(shù)學的重要方式。本節(jié)課的教學設(shè)計我注重了學生自主探究和小組合作學習能力的培養(yǎng),注重學生知識生成過程的教學。
首先我選擇簡單的切入點,從解決問題入手,引出兩數(shù)相除,商可以用分數(shù)來表示;
再次創(chuàng)設(shè)問題情景,引發(fā)學生不斷思考。在教學例2時,先在小組內(nèi)討論交流,大膽放手讓學生自主探究,再動手操作將3個餅平均分給4個人。給學生充分的探究交流時間,在展示匯報時,學生給我了驚喜,我感覺到本次學生的小組合作學習是非常有效的,他們的分法竟然有4種之多,而課本上只是一幅圖展示了一種分法。對本節(jié)課的難點,分數(shù)的兩種表示方法水到渠成的突破了。由此我相信只要給學生充足的時間,學生的潛能一定會很好的.彰顯出來。
最后讓學生通過觀察、比較、歸納出分數(shù)與除法的關(guān)系。學生的學習興趣濃厚,教學效果比較好。
本節(jié)課也存在一些問題:學生小組合作、動手操作能力還有待進一步提高速度;學生在投影上展示時,學生自己準備的學具具紙片太薄,不便于操作;老師對學生還是不夠放心,對重點內(nèi)容在學生探究出來以后,還會再次強調(diào),導致最后的練習時間較倉促。
分數(shù)除法的教學反思2
本節(jié)課是五年級下冊第三單元內(nèi)容,是在學習了分數(shù)除法(一)的內(nèi)容,即除數(shù)是整數(shù)的除法的基礎(chǔ)上進行教學的。這節(jié)課的教學重點是使學生理解一個數(shù)除以分數(shù)的意義及計算方法,教學難點是使學生理解一個數(shù)除以分數(shù)的.意義和基本算理。
教學中,我先設(shè)計了“分一分”活動,從整數(shù)除以整數(shù)到整數(shù)除以分數(shù),借助除法的意義和圖形語言,使學生初步體會“除以一個分數(shù)”與“乘這個分數(shù)的倒數(shù)”之間的關(guān)系;接下來的“畫一畫”活動,指導學生利用圖示分析數(shù)量關(guān)系,進一步體會分數(shù)除法的意義和算法,體現(xiàn)數(shù)形結(jié)合的思想;最后的“填一填,想一想”中,通過對前面問題思考過程的整理,使學生進一步理解分數(shù)除法的意義,讓學生在觀察、比較、分析中發(fā)現(xiàn)問題中蘊含的規(guī)律。課中采用讓學生通過觀察、比較與思考,發(fā)現(xiàn)知識間的內(nèi)在聯(lián)系,主要是教會學生一種學習方法,即分數(shù)除法的意義可聯(lián)系整數(shù)除法的意義進行學習。
課上完后,效果并沒有我想象中那么好,有許多不盡人意的地方,最主要是時間安排不當,有點前松后緊,致使后面布置的進一步練習沒有當堂去做而改成課后完成,造成缺憾。改進方法:在經(jīng)歷知識的形成時,時間應(yīng)安排緊湊些,增強同桌小組合作的實效性."畫一畫"環(huán)節(jié)可考慮讓學生直接在書本上完成.這樣也許就不會浪費時間.而整堂課安排更為合理一些,就能讓學生更明白學習數(shù)學的價值,從而達到教學的目的.其次在學生獨立思考或同桌合作交流時,還是發(fā)現(xiàn)有部分學生沒參與進來,或參與不夠。那么在今后教學中無論課中、還是課余都應(yīng)多加強對這部分學生的關(guān)注。
分數(shù)除法的教學反思3
《分數(shù)與除法》是在學生學習了分數(shù)的意義基礎(chǔ)上進行教學的,通過這節(jié)課的教學,目的是讓學生在理解了分數(shù)的意義基礎(chǔ)上,從除法的角度去理解分數(shù)的意義,掌握分數(shù)與除法的關(guān)系,會用分數(shù)表示兩個數(shù)相除的商。
在這節(jié)課的教學中,我覺得有以下幾方面值得我去思考:
一,在學生用除法的意義理解分數(shù)的意義時,能夠借助直觀形象的實物圖,通過動手操作、演示說明等方法,讓學生理解分數(shù)的意義,這對于小學生來說,理解起來比較容易。但由于我在教學時,疏忽了個別理解能力較差的學生,在演示說明的時候,叫的學生少,如果能多叫幾名同學演示說明,再加上教師的及時點撥,我想這部分學生在理解這一難點時,就會比較容易了。
二、學生不是理想化的學生,不要指望他們什么都會,因為學生之間畢竟存在著很大的差異。但說的不是很明白。特別是3個餅合在一起來分學生,每一份是多少快,學生不太理解,在以后的備課過程中,要充分考慮學生的已有知識水平和心理認知特點。
三、小組的全員參與不夠。在小組合作進行把3張餅平均分給4個人時,有的小組合作的效果較好,但有的小組有個別同學孤立,不能很好的與人合作,我想,學生在動手操作之前,教師如果能讓小組長布置好明確的任務(wù)分工,讓每個人都有事可做,小組合作的效果就會更好了。
四、在教學設(shè)計環(huán)節(jié)上,學生動手操作的內(nèi)容過多,使整堂課顯得很羅嗦,練習的時間就相對縮短了。在操作這一環(huán)節(jié)上,我設(shè)計了兩次動手操作,都是分餅問題,分餅的目的是讓學生用除法的意義理解分數(shù)的意義,學生分了兩次,但還是有的.同學理解的不是很透徹,如果只讓學生分一次,把這一次的操作活動時間延長一些,匯報演示時讓每個類型的學生都有參與展示的機會,我想這樣教師就會有充足的時間在學生匯報展示的時候給予指導,使學生真正理解分數(shù)的意義。
以上幾方面就是我對這節(jié)課的一點思考,也是我在以后的教育教學中應(yīng)該注意的幾個方面,相信自己以后在這幾方面會做得更好。
分數(shù)除法的教學反思4
人教版六年級上冊第三單元“分數(shù)除法應(yīng)用題”的教學是本冊的一個教學重點和難點。很多老師都深感在此處和學生說不清,教學效果不佳。我個人通過在本段時間的教學和反思,自認為找到了一些基本的“小竅門”,和大家交流一下我的一些比較成功的做法。
一、加強前后知識之間的聯(lián)系,實現(xiàn)知識的正遷移。
要想第三單元學生學的順利,第二單元知識的學習一定要鋪墊好。
一是,一個數(shù)乘分數(shù)的意義一定要理解好,讓學生深刻地認識到:求一個數(shù)的幾分之幾是多少用乘法計算。
二是,能快速地根據(jù)題中的關(guān)鍵句判斷出誰是單位“1”。比如教學分數(shù)乘法應(yīng)用題時,首先要注意引導學生看出是哪兩個量在比較,誰是單位“1”?怎么確定的?這可以通過題意畫圖來說明。通過學生實踐,讓學生歸納出快速找單位“1”的方法:是“誰”幾分之幾,相當于“誰”的幾分之幾,比“誰”多(少)幾分之幾,“誰”就是單位“1”。最簡單的方法是:分率前面的量就是單位“1”。
三是,學生要熟練掌握畫線段圖的方法。比如要先畫單位“1”(因為單位“1”是比較的標準,所以要先畫),再畫比較量。如果是“部分”與“整體”相比較的關(guān)系,可以畫一條線段表示,如果是“兩個不同的量”相比較,就要用兩條線段表示。
四是,能根據(jù)線段圖或關(guān)鍵句快速寫出題中的“等量關(guān)系式”。其中根據(jù)應(yīng)用題中的“關(guān)鍵句”進行分析比較快捷。
例:“柳樹是楊樹的”等量關(guān)系式:楊樹× =柳樹
“柳樹比楊樹多”等量關(guān)系式:楊樹+楊樹× =柳樹或者楊樹×(1+)=柳樹這樣學生在學習用方程解決分數(shù)除法應(yīng)用題時“找等量關(guān)系式”就輕松多了。
二、教學分數(shù)除法應(yīng)用題的時候要復習到位,喚醒學生已有的知識經(jīng)驗。
比如教學第三單元分數(shù)除法“解決問題”例1的時候,就要復習一下學生學習第二單元分數(shù)乘法“解決問題”例1的`知識,如從關(guān)鍵句中找單位“1”、說出等量關(guān)系式等。教學分數(shù)除法解決問題例2時,就要對應(yīng)復習第二單元乘法解決問題例2和例3的知識。一節(jié)課只有事先的工作做得好,才能達到事半功倍的效果。
三、在教師的引導下提高學生讀題、分析題的能力。
剛開始學習的時候,老師常常都引導學生根據(jù)具體的線段圖來找分數(shù)除法中的等量關(guān)系式,以達到“數(shù)形結(jié)合”的目的,想法是好的,但效果卻不盡人意,讓學生每道題都畫線段圖也不現(xiàn)實,時間也不允許。所以,在學生掌握了畫線段圖分析數(shù)量關(guān)系后,我就讓學生扔掉“線段圖”這根拐棍,引導學生從關(guān)鍵句的字面上來分析、理解,從而發(fā)現(xiàn)找“等量關(guān)系式”的快捷方法。如:柳樹比楊樹多。引導學生分析:
、僬l與誰相比較?(柳樹與楊樹相比較)
、谡l是單位“1”?(楊樹)
③多是多“誰”的?(多楊樹的)
④到底多多少,具體的量怎么算?(楊樹×)
⑤這句話的意思就是:柳樹比楊樹多了楊樹的。所以等量關(guān)系式應(yīng)該是怎么樣的?(楊樹+楊樹× =柳樹)
當然,還有一種等量關(guān)系式:楊樹×(1+)=柳樹可由以下幾個問題入手:
①柳樹比楊樹多,就是比單位“1”多,柳樹應(yīng)該是楊樹的幾分之幾?(1+ =)
、诩戳鴺涞目脴=楊樹的,所以等量關(guān)系式應(yīng)該是怎么樣的?
③根據(jù)這個等量關(guān)系式,想想用算術(shù)方法應(yīng)該怎么列式?為什么?柳樹的棵樹和之間有什么關(guān)系?(對應(yīng)關(guān)系,從而導出:對應(yīng)量÷對應(yīng)分率=單位“1”的量)。
學生等量關(guān)系式找到了,就能很容易用方程或者算術(shù)方法解決分數(shù)除法問題了。
總之,我通過運用以上的教學方法,達到了非常好教學效果,班級成績也在學年一路領(lǐng)先。
分數(shù)除法的教學反思5
在本次校舉行的公開課活動中,我聽了高年級劉老師的一節(jié)數(shù)學課,聽過這節(jié)課后。
我認為優(yōu)點體現(xiàn)在:
一、能夠借助直觀形象的實物圖,通過動手操作、演示說明等方法,讓學生理解分數(shù)的意義;
二、小組參與的力度大,充分調(diào)動了學生學習的積極性,使學生的“手、眼、口”都得到了鍛煉。
不足之處是:
在教學環(huán)節(jié)的設(shè)計上,學生動手操作的.內(nèi)容過多,使整堂課顯得羅嗦,練習的時間相對縮短了,本節(jié)課的重點內(nèi)容是讓學生理解:一個餅的四分之三也就是三個餅的四分之一,這個環(huán)節(jié)結(jié)束后自然而然地就引出了“分數(shù)與除法的關(guān)系”,因前面耽誤的時間過長,致使本節(jié)課的內(nèi)容沒有講完,學生沒有理解透徹,教師就急于進入下一個環(huán)節(jié)的教學。從劉老師的這節(jié)課上,我也看到了自己在教學中的不足,作為數(shù)學教師,怎樣上好一節(jié)課,怎樣讓學生切實理解所學內(nèi)容?
我認為有以下兩點值得去深思:
一、有沒有把課堂還給學生?
課改風風火火進行了這么多年,而且一直提倡把課堂還給學生,讓學生做課堂的主人,教師只做引導者,可是實際的課堂教學中,教師講的多,學生說的少,完全還是過去老的教學方法,造成這種情況的原因是:1、教師恐怕學生學不會,低估了學生的能力就;2、耽誤教學進度;3、教師還沒有形成意識……
二、如何“還”?
很大一部分教師,也想把課堂還給學生,可是如何“還”?完全放手行嗎?學生不是理想化的學生,因為學生之間畢竟存在著很大的差異,不要指望他們什么都會,如果“收、還”不當,還會適得其反,只有“收、還”得當,才會事半功倍。
說起容易做起難,要做到以上兩點絕非易事,不僅需要提高教師自身的業(yè)務(wù)水平,更要深入地了解學生、鉆研教材。
分數(shù)除法的教學反思6
《分數(shù)除法》這部分內(nèi)容是在本冊第三單元中分數(shù)乘法的基礎(chǔ)上教學的。這是本單元教學的重點。在推導分數(shù)除法的計算方法,我聯(lián)系實際問題分析、推導,幫助學生真正意義的理解分數(shù)除法的算理。在分數(shù)除法中,不論哪種情況的計算方法,都可以歸結(jié)為乘除數(shù)的倒數(shù)。但如果開始就舉一個數(shù)除以分數(shù)的例子,計算方法的推導過程比較復雜,學生較難理解。所以在教學例題時,我分兩步進行教學。先通過例2學習分數(shù)除以整數(shù),再通過例3學習一個數(shù)除以分數(shù)。然后加以歸納,把分數(shù)除法的計算方法統(tǒng)一起來。
從整個教學過程來看,學生始終能以積極的態(tài)度投入到每一個環(huán)節(jié)的學習中,在進行自主探究的過程中,對算法有了具體的認識,而且能夠分析思考進而得出分數(shù)除以整數(shù)的一般性計算法則。反思整個教學過程,(轉(zhuǎn)載于:分數(shù)除法(二)教學反思)我有以下幾點感受:
一、學生對新知識的學習必須以已有的知識和學習經(jīng)驗作為基礎(chǔ),因此教師必須正確分析學生的.學情并根據(jù)此來設(shè)計教學環(huán)節(jié)。分數(shù)除以整數(shù)的教學基礎(chǔ)在于以下幾點:分數(shù)與小數(shù)的轉(zhuǎn)化;分數(shù)的意義;分數(shù)乘法的意義;倒數(shù)的知識;商不變的性質(zhì)等。這些知識在以前的學習中,學生都有了足夠的掌握。因此,對于本節(jié)課內(nèi)容的教學,學生就能運用自己已有的知識經(jīng)驗去探究問題。
二、面對新知識的學習,不是教師去講解,而是讓學生自主探求解決問題的方法。這為學生提供了充分的學習空間,學生的思維是發(fā)散的,學生的方法是多樣的。學習活動中,學生自己去思考、去經(jīng)歷、去交流,對問題的研究確實很到位,想出了畫圖的方法和計算的方法,而且計算的方法不唯
一。從研究的結(jié)果看,說明學生有很強的求知欲,有去經(jīng)歷學習過程、探索過程的強烈熱情,這是學生個體的需要,也是張揚學生個性的過程。這一過程恰恰體現(xiàn)了學生們具有學習的主動性和主體意識。這方面也是本節(jié)課最成功之處。
分數(shù)除法的教學反思7
本課教學主要是學習分數(shù)除以整數(shù),讓學生理解分數(shù)除以整數(shù)的意義,掌握分數(shù)除以整數(shù)的計算方法。
一.準確把握學生的認知基礎(chǔ)是進行教學設(shè)計的基礎(chǔ)。有了分數(shù)乘法的學習基礎(chǔ),學生們能夠很快適應(yīng)這一課的學習方式,本課的邏輯起點是整數(shù)除法的意義,分數(shù)乘法的意義和計算方法以及找一個數(shù)的倒數(shù)的方法。因此我從現(xiàn)實中的分數(shù)乘法問題和找一個數(shù)的倒數(shù)引入,幫助孩子們復習前知,當學生體會到乘除法之間的互逆關(guān)系后,再提出一個生活中的'實際問題,引出分數(shù)除法計算的必要性,為后續(xù)的學習架好了階梯。
二.在準確把握了學生的認知基礎(chǔ)后,如何進行準確的目標定位是教學設(shè)計的關(guān)鍵。本課如果僅僅關(guān)注學生是否會算了,那是不夠的,在設(shè)計中,我們還應(yīng)關(guān)注表象后的更深層元素,如:學生們對算理理解了嗎?他們的思維是否得到了實質(zhì)上的提升?他們的學習方法是否得到增進?他們是否有學習的積極態(tài)度?等等。因此,在本課教學目標的制定中,我的著眼點是不僅使學生會算,更是通過對意義的理解,讓學生們深刻認識這樣算的道理,突出“過程性目標”。讓學生經(jīng)歷涂一涂、畫一畫、算一算、說一說的過程,在探究的過程中,讓孩子們形成一種“知其然更要知其所以然”的學習態(tài)度,獲取一種學習的能力,為學生的可持續(xù)發(fā)展打基礎(chǔ)。
反思整堂課,我還存在著很多不足:
1、沒有給出正確的引導。我的問題沒有給學生很好的提示,我也沒有及時去引導他們,導致課堂的重點知識不是由學生探討出來,而是由我灌輸給他們的,沒有發(fā)揮學生的自主性。
2、課件做的不到位。在分析“分數(shù)除以整數(shù)”時,要引導他們得出“除以一個非零整數(shù)等于乘以這個整數(shù)的倒數(shù)”時,課件沒有體現(xiàn)漸變的過程,因此也沒有讓學生充分的理解算式的原理。
3、不要牽著學生思維走,要跟著學生的思維走。學生的思維不可能完全符合我們心中所想的,所以在他們基本上理解清楚的時候,不要硬是糾結(jié)于某個字眼或者某句話,硬是把學生的語言帶牽入到自己的思維中。我們可以根據(jù)他們的思維,一步步的提問,讓他們理解問題就行了,這點是我們作為老師要特別注意的。
最后的總結(jié)部分應(yīng)該是這堂課比較成功的地方,既讓他們自己分析了這堂課的收獲,也通過練習來鞏固了今天所學的知識。
今天的課讓我成長了不少,認識到了自己所存在的不足之處,只有不斷的發(fā)現(xiàn)問題,才能夠解決問題。我們要善于發(fā)現(xiàn)學生可貴的地方,站在他們的角度考慮問題,吃透書本,才能夠讓自己迅速的成長起來。
分數(shù)除法的教學反思8
教學分數(shù)與除法的關(guān)系時學生很是配合,仿佛早已掌握了所有知識點,對于我的提問對答如流,甚至當我給出例題÷4時,全班不假思索不屑一顧的脫口而出四分之三,而當我問出為什么時,他們甚至不愿意去思考,仿佛我問的這個"為什么"簡直就是廢話中的廢話。整個班級躁動不安,是清明假期臨的緣故吧。看著即將發(fā)怒的老師,孩子們安靜下一張張稚氣的臉望著我,眼神中帶有一絲絲驚恐。我突然想笑,這不就是兒時的自己嗎?我沉住氣笑著說:明天放假了,看大家很是興奮吧!孩子們長舒一口氣掩面而笑。我接著說:站好最后一班崗的戰(zhàn)士才是真正的好戰(zhàn)士。同學們心領(lǐng)會神的坐得端端正正。"授人以魚,不如授人以漁。"我接著說,"大家都知道除以4得四分之三,那除以4為什么等于四分之三呢?四分之三就相當于魚。而老師想讓你得到的是漁,你覺得呢?"果然還是聰明的孩子,輕輕一撥,大部分開始思考了,我和孩子們開始了我鋪好的探究之旅。
一、通過操作,感悟算理。
我叫學生拿出前準備好的'三個圓,讓學生在小組內(nèi)用自己喜歡的方式驗證對除以4這一結(jié)果的猜想。孩子們或靜下心仔細思考;或把自己手里的圓形折一折、剪一剪;或在本子上畫一畫、寫一寫;或同桌小聲交流自己的想法。我把想法不同的孩子叫上講臺,在黑板上畫出自己的思考過程。并讓他們一一介紹。通過學生的操作,得出兩種分法,方法(一):把三個圓一個一個分,每次得四分之一,分次,就得個四分之一,就是四分之三張餅。方法(二):把三個圓疊起,平均分成4份,得到張餅的四分之一,也是個四分之一,相當于一張餅的四分之三。不管怎樣分,都可以驗證÷4用分數(shù)四分之三表示結(jié)果。還有學生想出了方法(三):除以4得07,07化成分數(shù)也是四分之三。通過學生自主操作讓其充分理解其中的算理。
二、再次說理,悟出關(guān)系。
在學生初步感知分數(shù)與除法的關(guān)系時,我有意識地把例題改了一下,把塊餅平均分給個人,把4塊餅平均分給7個人,讓學生通過畫圖或說理,快速的算出它們的商。讓學生親身體會到計算兩個整數(shù)相除,除不盡或商里面有小數(shù)時就用分數(shù)表示他們的商,這樣既簡便又快捷,而且不容易出錯。
通過學生自主生成的三道算式,讓學生去發(fā)現(xiàn)除法與分數(shù)之間到底有怎樣的關(guān)系?并把自己的想法和同桌互相交流。最終學生小結(jié)出:除法中的被除數(shù)相當于分數(shù)的分子,除數(shù)相當于分數(shù)的分母,除號相當于分數(shù)線。并明確:除法是一種運算,而分數(shù)是一種數(shù)。
三、對比練習,深化知識。
出示:
把三塊餅平均分給7個小朋友,每人分得這些餅的幾分之幾。
把三塊餅平均分給7個小朋友,每人分得幾分之幾塊。
讓學生觀察這兩道題目的區(qū)別,一道帶單位,一道不帶單位。第一道是根據(jù)分數(shù)的意義把單位"1"平均分成幾份,每份就是單位"1"的幾分之一,是份數(shù)與單位"1"的關(guān)系,在數(shù)學中我們稱為分率,分率不帶單位。第二題帶單位則表示的是一個具體的數(shù)量,則用總數(shù)量除以平均分的份數(shù)得到每份的具體數(shù)量,得數(shù)的單位跟被除數(shù)的單位一致。明確:分數(shù)有兩種含義,一種表示與單位1的關(guān)系即分率(不帶單位),一種則表示具體的數(shù)量(要帶單位),為以后學習分數(shù)和百分數(shù)應(yīng)用題做好鋪墊。
在教學過程中,讓學生在自主參與,動手操作、觀察比較、交流匯報的基礎(chǔ)上去推理和概括,能達到事半功倍的效果。我一直崇尚讓學生自己去發(fā)現(xiàn),自己去總結(jié),讓學生能學習探究問題的方法,而不是單純的教授一些解題技巧,因為我知道授生以"漁"永遠比授生以"魚"的重要的多!
分數(shù)除法的教學反思9
本節(jié)課重點是理解分數(shù)與除法的關(guān)系、帶分數(shù)與假分數(shù)互化。難點還是理解除法與分數(shù)的關(guān)系,雖然在復習舊知,如:把6米的繩子平均分成兩段,每段長多少米?簡簡單單的復習為探索新知做鋪墊,可課件呈現(xiàn)課件呈現(xiàn)把一塊蛋糕平均分給2個小朋友,每人能得到幾塊蛋糕?學生把剛才復習的除法計算的知識進行遷移,很容易能用算式1÷2來計算,有的學生會直接用二分之一表示,我引導:既然都是正確,就說明可以用等于號了。
接著從課本的例子:如果有7塊蛋糕,要分給3個小朋友,每個小朋友又能得到多少呢?學生很快就能列式表示,并用分數(shù)表示結(jié)果。然后讓學生觀察兩個式子,看看分數(shù)與除法有什么關(guān)系?先讓學生同組交流討論,再全班反饋交流,學生能說出分數(shù)和除法有關(guān)系,就是說不出所以然,我只好問:這個分子和除法的'什么好像相當?總算是把這些關(guān)系理清,可學生提出疑問:“能不能說分子等于被除數(shù)?”我說不行,只能用“相當”更恰當。
對于假分數(shù)化帶分數(shù),我從上次作業(yè)的一個圖形引導,二又八分之六等于八分之二十二,完整一個單位“1”有八份,那么2個單位就是十六加上不完整的6就是22,看來分子除以分母后的商是整數(shù)部分,余數(shù)是新的分子,反過來是帶分數(shù)化假分數(shù),可以引導學生從被除數(shù)=除數(shù)×商+余數(shù),這樣學生就很明朗。
特別強調(diào)的是:在帶分數(shù)和假分數(shù)互化時,一定要演算,培養(yǎng)演算的習慣是學生學習中不可缺少的。
本節(jié)課遺憾的是講得太多,學生思考的時間少了,雖然學生認真聽講,但不利于學生的探究能力,值得注意。
分數(shù)除法的教學反思10
分數(shù)除法應(yīng)用題是在學生已經(jīng)學習了運用分數(shù)乘法解決一些實際問題的基礎(chǔ)上進行教學的。分數(shù)除法應(yīng)用題是本冊教學中的難點,要突破這個難點,讓學生透徹理解這類應(yīng)用題,就要抓住乘、除法之間的內(nèi)在聯(lián)系,通過運用轉(zhuǎn)化、對比等方法,使學生了解這類分數(shù)應(yīng)用題的特征,再借助線段圖分析題中的數(shù)量關(guān)系,找出解題規(guī)律。
這節(jié)課我首先復習了以前的知識,找出題中的單位“1”以及寫出含x的代數(shù)式,這兩道復習題為接下來的學習做了很好的鋪墊,有利于接下來的教學,但在第二題中,缺少了線段圖,趙老師給我提議可以給出線段圖,讓學生根據(jù)線段圖列式,也可以讓學生自己去畫出線段圖。線段圖是學生必須要會畫會理解的重點內(nèi)容,在這一問題上,我有欠考慮。
展示出例題:某學校開設(shè)了課外興趣小組,其中有美術(shù)小組和航模小組,并且美術(shù)小組有25人,美術(shù)小組的人數(shù)比航模小組多,航模小組有多少人?
一、我讓學生大聲讀題并思考三個比較簡單的問題,學生都表現(xiàn)得不錯,但這里只有讀題、理解題目要求及關(guān)系,并沒有提出更高的有挑戰(zhàn)的要求,是課前低估了學生的能力,把學生當成了沒有良好閱讀題目的習慣、解決問題的能力有限的學困生。
二、是根據(jù)題意畫出線段圖,在課前準備課的時候,我就思考是否讓學生自己試著畫出線段圖,但考慮到本班學生的特殊性,放棄了這個想法,最后還是由我?guī)е鴮W生畫出線段圖。這樣缺乏了學生的自主探索,沒有讓學生體會到畫線段圖的重要性。
三、讓學生根據(jù)線段圖列出等量關(guān)系式,這個知識點也是本班學生的一個難點,經(jīng)過我再三的引導學生準確無誤的'說出了等量關(guān)系式。
四、根據(jù)本題的等量關(guān)系式,用方程的方法解答,分析題意得出單位“1”未知,并且要求的就是單位“1”,設(shè)未知的單位“1”為x,列出方程。將方程列出來之后,我讓學生自己在草稿紙上演算解方程,請一個學生在黑板上做,經(jīng)過我的觀察巡視,大部分學生能夠準確地解出方程。
五、我改變題意,變成了一個數(shù)比另一個數(shù)少幾分之幾的稍復雜的應(yīng)用題,有了前面一道題的引導,學生能夠較快的列出方程并能求出正確的解。這兩種類型題結(jié)束之后,我展示了這兩種類型題的線段圖,讓學生知道什么時候用“+”什么時候用“-”,然后提煉出此類題的解題方法。這個環(huán)節(jié)進行得較快,沒有讓學生進行細致的分析,只是淺嘗輒止,這樣學生可能沒有清晰的理解此類題的方法。在提煉出方法的時候,應(yīng)該要列出序號,這樣更有條理性,學生能夠看得更加的明白。
六、最后展示兩道同類型的應(yīng)用題,讓學生及時鞏固本節(jié)課的學習內(nèi)容。
從本節(jié)課的教學反饋來看,學生對應(yīng)用題的掌握情況不錯,能夠獨立完成類型題,但在看線段和畫線段圖時不是很熟練,這是接下來我要補充教學的內(nèi)容。
分數(shù)除法的教學反思11
最近一段時間,從分數(shù)的乘法到分數(shù)的除法,對于單純的計算方法孩子們臉上似乎沒有露出愁色。但是對于一直相伴至今的分數(shù)應(yīng)用題,孩子們理解與區(qū)別起來似乎確實比較吃力,各種數(shù)量關(guān)系確實比較難分析、判斷。怎樣選擇一個合適的解答方法,是孩子們掌握這類應(yīng)用題的關(guān)鍵,對此,我總結(jié)以下幾點體會:
1、一找、二看、三判斷
分數(shù)應(yīng)用題的基礎(chǔ)題型是簡單的分數(shù)乘法應(yīng)用題,要抓住的就是分數(shù)乘法的意義:單位“1”×分率=對應(yīng)量,包括分數(shù)除法應(yīng)用題,仍然使用的是分數(shù)乘法的意義來進行分析解答,所以要把這個關(guān)系式吃透,同時還要讓學生理解什么是分率,什么是對應(yīng)的量,從中總結(jié)出:“一找:找單位“1”;二看:單位“1”是已知還是未知;三:判斷已知用乘法,未知用除法。在簡單的分數(shù)乘法除法應(yīng)用題中,反復使用這個解答步驟以達到熟練程度,對后面的較復雜分數(shù)應(yīng)用題教學將有相當大的幫助。
2、弄清對應(yīng)量、對應(yīng)分數(shù)、單位‘1’
教到復雜的分數(shù)應(yīng)用題時,要抓住例題中最具有代表性的也是最難的兩種題型加強訓練,就是“已知對應(yīng)量、對應(yīng)分率、求單位‘1’”和“比一個數(shù)多(少)幾分之幾”這兩種題型,對待前者要充分利用線段圖的優(yōu)勢,讓學生從意義上明白單位“1”×對應(yīng)分數(shù)=對應(yīng)量,所以單位“1”=對應(yīng)量÷對應(yīng)分數(shù)。在訓練中牢固掌握這種解題方式,會熟練尋找題中一個已知量也就是“對應(yīng)量”的對應(yīng)分數(shù)。對于后者,要加強轉(zhuǎn)化訓練,要熟練轉(zhuǎn)化“甲比乙多(少)幾分之幾”變成“甲是乙的1+(或-)幾分之幾”,對這種轉(zhuǎn)化加強訓練后學生就能輕松地從“多(少)幾分之幾”的關(guān)鍵句中得出“是幾分之幾”的關(guān)鍵句,從而把較復雜應(yīng)用題轉(zhuǎn)變成前面所學過的簡單應(yīng)用題。
3、線段圖、數(shù)量關(guān)系、關(guān)系轉(zhuǎn)化
。1)畫線段圖進行分析。對于一些簡單的分數(shù)應(yīng)用題,教師要教會學生畫線段圖,然后引導學生觀察線段圖,畫線段圖是強調(diào)量在下,率在上。如果單位“1”對應(yīng)的數(shù)量是已知的,就用乘法,找未知數(shù)量對應(yīng)的分率;如果單位“1”對應(yīng)的數(shù)量是未知的.,就用方程或除法,找已知數(shù)量對應(yīng)的分率。
。2)找數(shù)量關(guān)系進行分析。有許多的分數(shù)應(yīng)用題,題目中都有一句關(guān)鍵分率句,教師要引導學生把這一句話翻譯成一個等量關(guān)系,然后根據(jù)這一個數(shù)量關(guān)系,即可求出題目中的問題,找到解決問題的方向。這一點必須教會給學生。
(3)用按比例分配的方法進行分析。有部分分數(shù)應(yīng)用題,可以把兩個數(shù)量之間的關(guān)系轉(zhuǎn)化為比,然后利用按比例分配的方法進行解答。當然還要鼓勵學生學會用多種方法解答。
總之,分數(shù)應(yīng)用題的學習的確有難度,但并非難以理解和接受,我將其以上三點用了六句話進行總結(jié)了一下,做分數(shù)應(yīng)用題時,“先找單位1,再看知不知,已知用乘法,未知用除法,比1多加,比1少則減”.所以只要充分了解教材,了解知識結(jié)構(gòu)中前后知識點的關(guān)系,這部分的教學會變得比較輕松。
分數(shù)除法的教學反思12
六年級上冊第三單元“分數(shù)除法的應(yīng)用”的教學是本冊的一個教學重點和難點。很多老師都深感在這部分的教學內(nèi)容較難,教學效果不佳。自己通過在本段時間的教學和反思,自認為找到了一些基本的“小竅門”,和大家交流一下。
一,加強前后知識之間的聯(lián)系,實現(xiàn)知識的正遷移。
要想分數(shù)除法學生學的順利,在學習分數(shù)乘法時一定要做好鋪墊。
1.一個數(shù)乘分數(shù)的意義一定要理解好,讓學生深刻地認識到:求一個數(shù)的幾分之幾是多少用乘法計算。
2.能快速地根據(jù)題中的關(guān)鍵句判斷出誰是單位“ 1” 。比如教學分數(shù)乘法應(yīng)用題時,首先要注意引導學生看出是哪兩個量在比較,誰是單位“ 1”?怎么確定的?這可以通過題意畫圖來說明。通過學生實踐,讓學生歸納出快速找單位“ 1”的方法:是“誰”的幾分之幾,相當于“誰”的幾分之幾,比“誰”多(少)幾分之幾,“誰”就是單位“ 1” 。最簡單的方法是:分率前面的量就是單位“ 1” 。
3.學生要熟練掌握畫線段圖的方法。比如要先畫單位“ 1”(因為單位“ 1”是比較的標準,所以要先畫),再畫比較量。如果是“部分”與“整體”相比較的關(guān)系,可以畫一條線段表示,如果是“兩個不同的量”相比較,就要用兩條線段表示。
4.能根據(jù)線段圖或關(guān)鍵句快速寫出題中的“等量關(guān)系式”。其中根據(jù)應(yīng)用題中的“關(guān)鍵句”進行分析比較快捷。
例:“柳樹是楊樹的”等量關(guān)系式:楊樹×=柳樹
“柳樹比楊樹多”等量關(guān)系式:楊樹+楊樹×=柳樹或者楊樹×(1+)=柳樹
這樣學生在學習用方程解決分數(shù)除法應(yīng)用題找等量關(guān)系式就輕松多了。
二,教學分數(shù)除法應(yīng)用題的時候要復習到位,喚醒學生已有的知識經(jīng)驗。
比如教學第三單元分數(shù)除法“解決問題”例4的時候,就要復習一下學生學習第一單元分數(shù)乘法“解決問題”例8的知識,如從關(guān)鍵句中找單位“1”、說出等量關(guān)系式等。教學分數(shù)除法解決問題例5時,就要對應(yīng)復習第一單元乘法解決問題例9的知識。一節(jié)課只有事先的工作做得好,才能達到事半功倍的效果。
三,在教師的引導下提高學生分析題意的能力。
剛開始學習的時候,老師常常都引導學生根據(jù)具體的線段圖來找分數(shù)除法中的等量關(guān)系式,以達到“數(shù)形結(jié)合”的目的,想法是好的,但效果卻不盡人意,讓學生每道題都畫線段圖也不現(xiàn)實,時間也不允許。所以,在學生掌握了畫線段圖分析數(shù)量關(guān)系后,我就讓學生扔掉“線段圖”這根拐棍,引導學生從關(guān)鍵句的`字面上來分析、理解,從而發(fā)現(xiàn)找“等量關(guān)系式”的快捷方法。如:柳樹比楊樹多。引導學生分析:①誰與誰相比較?(柳樹與楊樹相比較)②誰是單位“1”?(楊樹)③多是多“誰”的?(多楊樹的)④到底多多少,具體的量怎么算?(楊樹×)⑤這句話的意思就是:柳樹比楊樹多了楊樹的。所以等量關(guān)系式應(yīng)該是怎么樣的?(楊樹+楊樹× =柳樹)
當然,還有一種等量關(guān)系式:楊樹×(1+)=柳樹可由以下幾個問題入手:①柳樹比楊樹多,就是比單位“1”多,柳樹應(yīng)該是楊樹的幾分之幾?(1+ =)②即柳樹的棵樹=楊樹的,所以等量關(guān)系式應(yīng)該是怎么樣的?③根據(jù)這個等量關(guān)系式,想想用算術(shù)方法應(yīng)該怎么列式?為什么?柳樹的棵樹和之間有什么關(guān)系?(對應(yīng)關(guān)系,從而導出:對應(yīng)量÷對應(yīng)分率=單位“1”的量)。
學生等量關(guān)系式找到了,就能很容易用方程或者算術(shù)方法解決分數(shù)除法問題了。
以上只是自己一點淺顯的看法,懇請咱們的數(shù)學前輩和教學高手批評指正。
分數(shù)除法的教學反思13
雖說現(xiàn)在的教材已經(jīng)把意義淡化了,但我在教學中依然采用了整數(shù)與分數(shù)對比,乘法與除法對比的方式,揭示了分數(shù)除法的意義,
針對新教材的特點,對于分數(shù)除法的意義,我只是讓學生理解,并沒有強調(diào)口述,而是重點讓學生應(yīng)用分數(shù)除法的意義,根據(jù)給出的一個乘法算式寫出兩道除法算式,由于有了整數(shù)的基礎(chǔ)和前面對于意義的理解,學生掌握得也較順利。在分數(shù)除以整數(shù)的教學上,我把學習的主動權(quán)交給學生,讓他們動手操作、集思廣益,根據(jù)操作計算方法。于是學生們有的模仿分數(shù)乘整數(shù)的方法,分母不變,把分子除以整數(shù);有的根據(jù)題意及直觀操作,得出除以2也就是平均分成兩份,每份就是原來的.二分之一,因而除以2就是乘上2的倒數(shù)。對于學生的想法,我都充分予以肯定,并通過練習讓學生比較,選出他們認為適用范圍更廣的方式。由于學生理解透徹了,所以后面分數(shù)除以分數(shù)和整數(shù)除以分數(shù)的教學上,學生輕而易己地就掌握了計算方法。
分數(shù)除法的教學反思14
“分數(shù)與除法”這一教學內(nèi)容,是人教版小學數(shù)學第十冊,第四單元中第一小節(jié)的內(nèi)容。在學生學習本課內(nèi)容之前,已掌握了分數(shù)的意義,知道了分數(shù)的產(chǎn)生等知識,學完這節(jié)課的內(nèi)容將為今后學習假分數(shù)以及假分數(shù)化為整數(shù)或帶分數(shù)做好準備。所以讓學生很好的掌握分數(shù)與除法之間的關(guān)系,十分重要。
這節(jié)課的教學目標主要有兩個,第一,讓學生掌握分數(shù)與除法的關(guān)系,第二,要讓學生了解兩種分法。讓學生體會兩種分法的.全過程。
在本節(jié)課的教學中,我通過從解決簡單的問題入手提出了這樣幾個問題:把6張餅平均分給3個人每人分得幾張餅?把1張餅平均分給2個人每人分得幾張餅?把1張餅平均分給3個人每人分得幾張餅?學生分別口答每人分得2張、0.5張、1/3張。在此基礎(chǔ)上引導學生觀察三個算式和得數(shù),學生很快得出一個結(jié)論:兩數(shù)相除,商可能是整數(shù)、小數(shù)或是分數(shù),以此作為本節(jié)課的切入點。
讓學生明白1張餅的3/4相當于3塊餅的1/4是本節(jié)課的重點也是難點,我通過讓學生用3張圓形紙片動手分一分,并讓學生思考把3塊餅平均分給4個人可以有幾種分法,學生通過動手操作,得出兩種不同的分法,引申出兩種含義,即1張餅的3/4以及3塊餅的1/4,同時讓學生明白1張餅的3/4相當于3塊餅的1/4,也就是3/4張餅。通過這一過程,學生充分理解了3÷4=3/4的算理。
以上這一系列的教學活動,目的是讓學生通過動手操作,親身體驗,探究分數(shù)與除法的關(guān)系,從而激發(fā)學生的探究意識,引發(fā)學生的數(shù)學思考,使學生學會學習、學會思考。
在本節(jié)課的教學當中,我認為存在以下幾點不足:
1、課堂上對于學生的興趣培養(yǎng)、激勵性的語言還有些欠缺,學生顯得不夠積極主動。性格內(nèi)向的學生占絕大多數(shù),部分學生害怕在眾老師面前出錯,而顯得有些膽怯......由于多方面的原因,道致課堂氣氛不夠活躍。
2、學生的語言表達能力太差。課堂上不能用較為準確的語言來表述分數(shù)與除法的關(guān)系,今后應(yīng)予以加強。
3、教學時間安排欠合理,課堂練習太少。
針對以上存在的幾點不足,提出自己今后應(yīng)努力的方向:
今后要多研讀課標,熟讀教材,多與學生溝通,了解他們已有的知識水平,認真?zhèn)湔n。同時還要不斷地學習,提高自己的業(yè)務(wù)水平和教育教學能力。
分數(shù)除法的教學反思15
本周我們對分數(shù)除法這一單元所學知識,進行系統(tǒng)整理和復習。通過整理和復習,把前面分散學習的知識加以梳理和歸納,提出要點。
1.在復習概念方面,主要復習了分數(shù)除法的意義和比的意義。通過式子b×3/4=a,明確b的3/4等于a,由b×3/4=a得出a÷3/4= b;a÷b=3/4,a與b的比是3:4,使學生更清晰地感悟乘法與除法,分數(shù)與比之間的內(nèi)在聯(lián)系。
2.在復習計算方面,先讓學生說一說分數(shù)除法的計算方法,使學生明確整數(shù)可以看成分母是1的分數(shù),所以不管被除數(shù)、除數(shù)是整數(shù)(0除外)還是分數(shù),都可以把除轉(zhuǎn)化為乘,即除以一個數(shù)(0除外),等于乘這個數(shù)的倒數(shù)。
3.在復習比的'化簡方面,通過讓學生說出比和除法、分數(shù)的關(guān)系,化簡比的依據(jù),然后完成練習題,結(jié)合題目對常用化簡方法加以概括總結(jié)。
分數(shù)比:前后項同乘分母的最小公倍數(shù)
整數(shù)比:整數(shù)比前后項同時除以它們的最大公約數(shù),化簡成最簡單整數(shù)比
小數(shù)比:前后項的小數(shù)點右移動相同位數(shù)
重點強調(diào)了化簡比和比值的區(qū)別:化簡比是以比的形式出現(xiàn),而比值是一個數(shù)。
4.在復習比的應(yīng)用方面,通過分析數(shù)量關(guān)系,變換條件讓學生感受到分數(shù)乘除法形變神不變的內(nèi)涵。
六年級有男生60人,(),女生有多少人?
。1)女生人數(shù)是男生的2/3
。2)男生人數(shù)是女生的2/3
。3)男生人數(shù)比女生多2/3
(4)男生人數(shù)比女生少2/3
。5)女生人數(shù)比男生多2/3
(6)女生人數(shù)比男生少2/3
通過不同形式的變式練習,使學生體會到只要掌握住數(shù)量關(guān)系,就能解決問題。
在復習過程中也存在一些問題:
1.復習中只注重了基本的練習,但是題型千變?nèi)f化,學生靈活解題能力欠缺。
2.對于實際數(shù)量和分率的區(qū)別,學生容易出現(xiàn)混淆。
3.在分數(shù)乘除法應(yīng)用題中夯實數(shù)量關(guān)系的分析,用“單位1”已知和未知來進行乘除法的檢驗和驗證。
【分數(shù)除法的教學反思】相關(guān)文章:
分數(shù)與除法教學反思07-16
分數(shù)除法的教學反思06-17
分數(shù)除法教學反思06-09
分數(shù)除法二教學反思03-02
分數(shù)除法單元教學反思07-18
《分數(shù)除法三》教學反思04-07
分數(shù)除法的教學反思15篇03-05