《圓柱的體積》教案15篇
作為一位不辭辛勞的人民教師,就難以避免地要準備教案,教案是教學活動的總的組織綱領(lǐng)和行動方案。那么教案應(yīng)該怎么寫才合適呢?以下是小編收集整理的《圓柱的體積》教案,歡迎大家借鑒與參考,希望對大家有所幫助。
《圓柱的體積》教案1
教學目標:
1、知識技能
運用遷移規(guī)律,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2、過程方法
讓學生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學思想,體驗數(shù)學研究的方法。
3、情感態(tài)度價值觀
通過圓柱體積計算公式的推導、運用的過程,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學思考過程的條理性和數(shù)學結(jié)論的確定性,獲得成功的喜悅。
教學重點:
圓柱體體積的計算公式的推導過程及其應(yīng)用。
教學難點:
理解圓柱體體積公式的推導過程。
教學準備:圓柱體積公式推導演示學具、多媒體課件。
教學過程:
一、復習導入
同學們,我們的圖形世界十分豐富,回憶一下,什么叫做物體的體積?我們已經(jīng)學習了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?長方體
的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?
二、圖柱轉(zhuǎn)化,自主探究,驗證猜想。
。ㄒ唬┎孪搿
1、大家看圓柱的底面是一個圓形,在學習圓面積計算時,我們是把圓轉(zhuǎn)化成哪種圖形來計算的?(演示課件:圓轉(zhuǎn)化成長方形,推導圓面積公式的過程。)
[數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上。教師由復習圓面積公式的推導過程入手,實現(xiàn)知識的遷移。]
2、引發(fā)思考:我們能否把圓柱體也轉(zhuǎn)化成學過的立體圖形來計算它的體積呢?如果能,猜一猜能轉(zhuǎn)化成哪種立體圖形?揭示課題:圓柱的體積。
。ǘ┎僮黩炞C。
1、請學生拿出圓柱體的'演示學具,以小組為單位,聯(lián)想圓形面積的轉(zhuǎn)化方式,合作探究將圓柱轉(zhuǎn)化為長方體的方法。
在操作時,學生分組邊操作邊討論以下問題:
、倨闯傻慕崎L方體的體積與原來的圓柱體積有什么關(guān)系?
、谄闯傻慕崎L方體的底面積與原來圓柱的底面積有什么關(guān)系?
?.拼成的近似長方體的高與原來的圓柱的高有什么關(guān)系?
2、小組代表匯報
。▽W生按照自己的方式來轉(zhuǎn)化,會有多種轉(zhuǎn)化方法,教師適時加以鼓勵)
3、電腦演示操作
(1)電腦演示圓柱體轉(zhuǎn)化成長方體的過程:
仔細觀察:圓柱體轉(zhuǎn)化成一個長方體后,長方體的長相當于圓柱的什么?長方體的寬和高又相當于圓柱的什么?
動畫演示:把圓柱的底面平均分成32份、64份,切開后拼成的物體會有什么變化?
。ǚ值姆謹(shù)越多,拼成的圖形就越接近長方體)
。2)根據(jù)學生的觀察、分析、推想,老師完成板書:
長方體的體積=底面積×高
圓柱的體積=底面積×高
V=Sh
(3)你的猜想正確嗎?學生齊讀圓柱的體積計算公式。
三、練習鞏固,靈活應(yīng)用
闖關(guān)1.一根圓柱形鋼材,底面積是75平方厘米,長是90厘米。它的體積是多少?
讓學生試做,集體反饋。
闖關(guān)2.想一想:如果已知圓柱底面的半徑(r)和高(h),圓柱的體積的計算公式是什么?如果已知圓柱底面的直徑(d)和高(h)呢?如果已知圓柱的底面周長(C)和高(h)呢?
學生討論、交流、匯報。
小結(jié):解決以上問題的關(guān)鍵是先求出什么?(生:底面積)
闖關(guān)3.下面這個杯子能不能裝下這袋奶?(杯子的數(shù)據(jù)是從里面測量得到的。)學生在練習本上獨立完成,集體反饋。
四、課堂小結(jié)
學習本節(jié)課你有哪些收獲?還有哪些疑惑?(生匯報收獲)
五、布置作業(yè)
教科書第21頁練習三第1-4題。
板書設(shè)計:
圓柱的體積
長方體的體積=底面積×高
圓柱的體積=底面積×高
V= Sh
《圓柱的體積》教案2
教學目標
1.使學生理解和掌握圓柱的體積計算公式,能運用公式計算圓柱的體積、容積,解決一些簡單的實際問題。
2.滲透極限思想,發(fā)展學生的空間觀念。
3、培養(yǎng)學生仔細計算的良好習慣。
重難點
1、圓柱體體積的計算
2、圓柱體體積公式的推導
教學過程
一、復習導入
1.解答下面各題
。1)圓的半徑是2厘米。圓的面積是多少平方厘米?
。2)一個長方體,底面積是20平方米,高是2米,體積是多少?
2.導入
我們以前學過了長方體、立方體的體積的計算方法,都可以用公式V=SH進行計算,圓柱體的體積又該怎樣計算呢?這節(jié)課我們一起來研究圓柱體體積的計算方法。(揭示課題)
二、探索新知
1.公式推導
(1)自學課本,初步感知圓柱是怎樣轉(zhuǎn)化成長方體的,讓學生去發(fā)現(xiàn)兩柱體之間的聯(lián)系。
。2)操作研討:演示操作,討論:拼成的長方體跟圓柱體有什么異同點?
異:長方體變成圓柱體。同:體積、底面積、高都相同。
(3)比較歸納
在自學、操作、觀察、討論的'基礎(chǔ)上得出:
圓柱體體積=圓柱底面積圓柱的高
V=SH
2.公式應(yīng)用
。1)例1.讀題,學生獨立解答,板演、反饋,說說列式依據(jù)與應(yīng)注意的問題。(單位)
類似題練習:
書本試一試和練一練
請同學板演計算的過程,并說明列式的依據(jù).同學之間評.
(3).深入練習,書本第5題.
(4)實際應(yīng)用:
測量生活中常見圓柱物體:茶葉罐、搪瓷杯,學生自由選擇。量底面直徑和高,并計算它的體積.
三、課堂總結(jié)
回顧學習全過程,知道求圓柱體積所需要的條件。質(zhì)疑問難。
四、布置作業(yè)
作業(yè)本一面。
《圓柱的體積》教案3
教學目標:
1、了解圓柱體體積(包括容積)的含義,進一步理解體積和容積的含義。
2、經(jīng)歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3、培養(yǎng)初步的空間觀念和思維能力;進一步認識“轉(zhuǎn)化”的思考方法。
教學重點:
理解和掌握圓柱的體積計算公式,會求圓柱的體積
教學難點:
理解圓柱體積計算公式的推導過程。
教學用具:
圓柱體積演示教具。
教學過程:
一、復述回顧,導入新課
以2人小組回顧下列內(nèi)容:(要求1題組員給組長說,組長補充。2題同桌互說。說完后坐好。)
1、說一說:(1)什么叫體積?常用的體積單位有哪些?
(2)長方體、正方體的`體積怎樣計算?如何用字母表示?
長方體、正方體的體積=()×()用字母表示()
2、求下面各圓的面積(只說出解題思路,不計算。)
(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
(二)揭示課題
你想知道課本第8頁左上方“柱子的體積”嗎?你想知道“一個圓柱形杯子能裝多少水”嗎?今天就來學習“圓柱的體積”。(板書課題)
二、設(shè)問導讀
請仔細閱讀課本第8-9頁的內(nèi)容,完成下面問題
(一)以小組合作完成1、2題。
1、猜一猜,圓柱的體積可能等于()×()
2、我們在學習圓的面積計算公式時,指出:把一個圓分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。圓柱的底面也可以像上面說的那樣轉(zhuǎn)化成一個近似的長方形,通過切、拼的方法,把圓柱轉(zhuǎn)化為一個近似的長方體(如課本第8頁右下圖所示)。(用自己手中的學具進行切、拼)觀察拼成的長方體與原來的圓柱之間的關(guān)系
(1)圓柱的底面積變成了長方體的()。
(2)圓柱的高變成了長方體的()。
(3)圓柱轉(zhuǎn)化成長方體后,體積沒變。因為長方體的體積=()×(),所以圓柱的體積=()×()。如果用字母V代表圓柱的體積,S代表底面積,h代表高,那么圓柱的體積公式可用字母表示為()
[匯報交流,教師用教具演示講解2題]
(二)獨立完成3、4題。
3、如果已知課本第8頁左上方柱子的底面半徑為0.4米,高5米,怎樣計算柱子的體積?
先求底面積,列式計算()
再求體積,列式計算()
綜合算式()
4、要想知道“一個圓柱形杯子能裝多少水?”可以用杯子的“()×()”(杯子厚度忽略不計)
【要求:完成之后以小組互查,有爭議之處四人大組討論!
教師根據(jù)學生做題情況挑選一些小組進行匯報、交流,并對小組學習情況進行評價。
三、自我檢測
1、課本9頁試一試
2、課本9頁練一練1題(只列式,不計算)
【要求:完成后小組互查,教師評價】
四、鞏固練習
課本練一練的2、3、4題
【要求:組長先給組員講解題思路,然后小組內(nèi)共同完成】
教師進行錯例分析。
五、拓展練習
1、課本練一練的5題
2、有一條圍糧的席子,長6.28米,寬2.5米,把它圍成一個筒狀的糧食囤,怎樣圍盛的糧食多?最多能盛多少立方米的糧食?
【要求:先組內(nèi)討論確定解題思路,再完成】
六、課堂總結(jié),布置作業(yè)
1、總結(jié):這節(jié)我們利用轉(zhuǎn)化的方法,把圓柱轉(zhuǎn)化為長方體來推導其體積公式,切記用“底面積×高”來求圓柱的體積。
2、作業(yè):課本練一練6題
《圓柱的體積》教案4
教學目標:
1.結(jié)合實際,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2.讓學生經(jīng)歷觀察、猜想、驗證等數(shù)學活動過程,培養(yǎng)學生探究推理能力,體驗數(shù)學研究的方法。
3.通過圓柱體積計算公式的推導、運用的過程,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學思考過程的條理性和數(shù)學結(jié)論的確定性,獲得成功的喜悅。
教學重點:
掌握和運用圓柱體積計算公式。
教學準點:
掌握圓柱體積公式的推導過程。
教學設(shè)想:
1.課前互動,我們做一個吹氣球的游戲,讓學生來對比氣球變大后所占用空間的變化。在熱烈的氣氛中讓學生感受物體的體積就是物體所占用空間的大小。
2.教學伊始我創(chuàng)設(shè)學具槽做圓柱學具這一睛境,讓學生感知圓柱體積的概念,再通過讓學生給這4個圓柱學具排序這一問題設(shè)疑,讓學生明確學習目標。
3.動手實踐是學生體驗的主要方式,合作交流是學生體驗的有效途徑。所以在教學中我為圖形轉(zhuǎn)化、猜想推理創(chuàng)設(shè)有助于學生自主探究的三步曲:第一步:選擇轉(zhuǎn)化的方法。第二步:體驗轉(zhuǎn)化的過程、第三步:驗證轉(zhuǎn)化的結(jié)果。引導學生開展觀察、操作、猜想、交流、轉(zhuǎn)化的活動,讓學生在數(shù)學活動中經(jīng)歷數(shù)學、體驗數(shù)學。
4.用字母表示公式已經(jīng)是學生很熟知的幾何知識,因此我為學生提供了與圓柱體積有關(guān)的字母,讓他們寫出相應(yīng)的公式并在接下來的環(huán)節(jié)中引導學生發(fā)現(xiàn)公式與習題的聯(lián)系,讓他們對號入座。學生根據(jù)不同的公式進行計算,給4個圓柱學具排序。這樣可以深入理解不同的條件、不同的方法,同樣可以得到圓柱的體積,在對比算法中掌握新知。
5.體積和容積這兩個概念在五年級已經(jīng)學過,學生會說意義,但是通過了解,學生并不是真正理解圓柱的體積和容積。所以我在第一次探究中安排了這樣的環(huán)節(jié),讓學生在學習實踐中區(qū)別圓柱的容積和體積。從形象到抽象建立圓柱的體積概念,符合學生的認知規(guī)律。第二次探究則是加入表面積這一剛剛學過的內(nèi)容,讓學生在為3道選擇問題的練習中達到區(qū)別體積、容積、表面積的目的,從而實現(xiàn)學習運用的最佳狀態(tài)。
6.最后的'思維訓練是計算正方體中最大圓柱體的體積,給學生以生動、形象、直觀的認識,此題算法多樣,富于啟發(fā)地清晰揭示了知識的內(nèi)在規(guī)律,使它和教學過程有機組合,把學習延伸到實際,讓知識在體驗中生成。
7.由于每個學生的知識經(jīng)驗、生活情景、思維方式的不同,對知識的學習也有獨特的理解和感受。所以我讓他們用今天的知識去解決生活中的問題,并寫成數(shù)學日記,讓他們用自己的方式去體驗、探究學習過程。
教學過程:
一、問題導入,質(zhì)疑問難
師:老師這里有兩個氣球,(師從兜里掏出兩個氣球,將其中一個遞給學生。)你試試把它們變大。(老師再把兩個氣球放回兜里。)為什么這個放不回去了?(因為其中一個的體積變大了。)看來它占據(jù)了很大的空間。教室中還有哪些物體占據(jù)空間?
師:這是一個制作學具的學具槽,想一想,它可以做出什么樣的學具來?
生:圓柱學具。
師:是的。仔細觀察,你有什么發(fā)現(xiàn)?
生:圓柱學具占據(jù)了學具槽的空間。
師:這就是圓柱學具的體積。你真善于發(fā)現(xiàn)!能用你的話說說,什么是圓柱的體積嗎?
生:圓柱的體積就是圓柱所占空間的大小。
師:誰來試著給這4個圓柱學具按體積從大到小排排序?你來試試。
生:體積大小接近,不能確定。
師:老師聽懂了,無法判斷的原因是不知道圓柱體積的大小,現(xiàn)在我們就來研究圓柱的體積。(師板書。)
二、圖形轉(zhuǎn)化。猜想推理
師:想一想,你有辦法得到這4個圓柱學具的體積嗎?(圓柱課件再從槽中跳出。)
生:用公式計算。
生:用水或沙子轉(zhuǎn)化計算。
師:你們是怎樣轉(zhuǎn)化的,具體說說。
生:用橡皮泥轉(zhuǎn)化計算。
生:用圓形紙片疊加計算……
師:嗯,這些方法都很好,就在今天的課堂你會選擇哪種方法?
生:因為沒有實驗學具,所以只能用公式計算。
師:其他的方法可以在課后進行。
師:想用公式計算的同學,你想怎樣推導圓柱的體積公式呢?結(jié)合你們以往學習幾何圖形的經(jīng)驗,舉例說明。
生:大部分圖形公式的推導都是把新學的轉(zhuǎn)化為學過的。例如:圓形可以轉(zhuǎn)化為長方形。
師:聯(lián)系舊知識,采用轉(zhuǎn)化法,確實不錯。
師:那現(xiàn)在它是一個圓柱,你想怎么辦?
生:像剛才一樣進行平均分。
師:你能具體說說嗎?
生:沿著圓柱的底面直徑平均切分成16個小扇形。
師:都說實踐出真知,接下來就請同學們拿出學具,動手嘗試著進行轉(zhuǎn)化,并說說轉(zhuǎn)化后的結(jié)果。
生:將圓柱沿底面直徑平均分成16個小扇形,切分之后,可以拼成一個近似的長方體。
師:(剛才我們將圓柱沿底面直徑平均分成16個小扇形,拼成一個近似的長方體。)如果想讓它更近似于長方體,你想分成多少份?(32)更近似一點。(64)你呢?(128)……
師:這是同學們剛才的轉(zhuǎn)化過程。
師:打開書,自由讀,用直線標記,找出關(guān)鍵詞,依照關(guān)鍵詞自由讀讀轉(zhuǎn)化的過程。
師:現(xiàn)在再請一名同學到前面來演示轉(zhuǎn)化過程,其他同學注意觀察,圓柱轉(zhuǎn)化為長方體后什么變了,什么沒變7(圓柱轉(zhuǎn)化為長方體時形狀變了,但是它們底面積、高和體積都沒變。)
總結(jié)文字公式:長方體體積=底面積×高
圓柱體體積=底面積×高
師:恭喜大家,我們已經(jīng)成功地推導出圓柱的體積公式。(掌聲鼓勵一下)老師這有一些字母:d、s、r、c、h、v、π。它們與圓柱體體積的計算公式息息相關(guān),請你們用字母表示出圓柱的體積公式。
生:v=sh
v=(d/2)2π×hv=π2×h
v=(c÷π/2)2π×h
師:對比這四個公式你又有什么新發(fā)現(xiàn)?(彩色粉筆畫線。)
生:相同之處都是底面積乘以高,不同是底面積求法不同。
師:謝謝你精彩的發(fā)現(xiàn),你叫什么名字,認識一下,老師會記住你的。
三、運用公式,解決問題
師:現(xiàn)在我們已經(jīng)知道了圓柱的體積公式,快來解決剛才的實際問題吧!這是我們要由大到小排序的4個圓柱學具,請你們拿出題卡計算出它們的體積并排序。
1號底面積50平方厘米,高2.1分米:
2號直徑是10厘米,高20厘米;
3號半徑是4厘米,高22厘米;
4號底面周長31.4厘米,高18厘米。
師:匯報一下你的計算和排序結(jié)果,并說說你應(yīng)用了哪個公式?
師:與他答案相同的同學舉手示意一下,你是怎樣做的?現(xiàn)在你清楚了嗎?
師:看來,靈活運用公式,并選擇合理的算法。會使我們的學習更高效。
四、巧用公式,多重探究
師:同學們到現(xiàn)在為止,你都學到了哪些關(guān)于圓柱的知識?
生:表面積、體積、容積。
師:老師這里有一組習題。請你們選擇合適的問題。
師:讀完之后,你認為求什么就可以大聲地說出來。
(生:體積、容積、表面積。)
學具廠有一個制作學具的圓柱形鐵皮桶。它的底面直徑是22厘米,高是25厘米,_________?從里面量底面直徑是20厘米,高是25厘米______________9底面積是380平方厘米。側(cè)面積是1727平方厘米_________________?
師:說說你選擇問題的根據(jù)是什么?
生:體積是圓柱所占空間的大小。容積是圓柱能容納物體的大小,表面積是圓柱所有面積的總和。
五、開放訓練,拓展提升
師:學習很愉快,我們來慶祝一下:在一個棱長為a分米正方體盒中,放一個最大的圓柱體蛋糕,系上b分米長的絲帶,(打結(jié)部分忽略不計)挖去1根直徑為c厘米,高是d厘米的圓柱蠟燭空隙,這個蛋糕體積到底是多少呢?這次我們男女生比賽,列式不計算,看誰解法多并說明解題思路。
《圓柱的體積》教案5
教學目標
1、理解圓柱體體積公式的推導過程,掌握計算公式。
2、會運用公式計算圓柱的體積。
教學重點
圓柱體體積的計算。
教學難點
理解圓柱體體積公式的推導過程。
教學過程
一、復習準備
。ㄒ唬┙處熖釂
1、什么叫體積?怎樣求長方體的體積?
2、圓的面積公式是什么?
3、圓的面積公式是怎樣推導的?
。ǘ┱勗拰
同學們,我們在研究圓面積公式的推導時,是把它轉(zhuǎn)化成我們學過的長方形知識的來解決的。那圓柱的體積怎樣計算呢?能不能也把它轉(zhuǎn)化成我們學過的立體圖形來計算呢?這節(jié)課我們就來研究這個問題。(板書:圓柱的體積)
二、新授教學
(一)教學圓柱體的體積公式。(演示動畫“圓柱體的體積1”)
1、教師演示
把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體。
2、學生利用學具操作。
3、啟發(fā)學生思考、討論:
。1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)
。2)通過剛才的實驗你發(fā)現(xiàn)了什么?
、倨闯傻慕频拈L方體和圓柱體相比,體積大小沒變,形狀變了。
、谄闯傻慕频拈L方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化。
③近似長方體的高就是圓柱的高,沒有變化。
4、學生根據(jù)圓的面積公式推導過程,進行猜想。
(1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?
。2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?
(3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?
5、啟發(fā)學生說出通過以上的觀察,發(fā)現(xiàn)了什么?
。1)平均分的份數(shù)越多,拼起來的形體越近似于長方體。
。2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
6、推導圓柱的體積公式
。1)學生分組討論:圓柱體的體積怎樣計算?
。2)學生匯報討論結(jié)果,并說明理由。
因為長方體的體積等于底面積乘高。(板書:長方體的體積=底面積×高)近似長方體的.體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高。(板書:圓柱的體積=底面積×高)
。3)用字母表示圓柱的體積公式。(板書:V=Sh)
。ǘ┙虒W例4。
1、出示例4
例4。一根圓柱形鋼材,底面積是50平方厘米,高是2.1米,它的體積是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
2、反饋練習
。1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?
。2)一個圓柱形罐頭盒的內(nèi)底面半徑是5厘米,高15厘米,它的容積是多少?
(三)教學例5。
1、出示例5
例5、一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?
水桶的底面積:
=3.14×
。3.14×100
。314(平方厘米)
水桶的容積:
314×25
=7850(立方厘米)
=7.8(立方分米)
答:這個水桶的容積大約是7.8立方分米。
三、課堂小結(jié)
通過本節(jié)課的學習,你有什么收獲?
1、圓柱體體積公式的推導方法。
2、公式的應(yīng)用。
四、課堂練習
。ㄒ唬┨畋
底面積S(平方米)
高h(米)
圓柱的體積V(立方米)
15
3
6.4
4
《圓柱的體積》教案6
教學目標:
1、理解圓柱體積公式的推導過程。
2、能夠初步地學會運用體積公式解決簡單的實際問題。
3、進一步提高學生解決問題的能力。
教學重、難點:
1、理解圓柱體積公式的推導過程。
2、能夠初步地學會運用體積公式解決簡單的實際問題。
3、理解圓柱體積公式的推導過程。
教學準備:圓柱切割組合模具、小黑板。
教學過程:
一、創(chuàng)設(shè)情境,生成問題
1、什么是體積?( 物體所占空間的大小叫做物體的體積。)
2、長方體的體積該怎樣計算?歸納到底面積乘高上來。
3、圓的面積怎樣計算?
二、探索交流,解決問題
1、計算圓的面積時,是把圓面積轉(zhuǎn)化成我們學過的長方形進行計算的,能不能把圓柱轉(zhuǎn)化成我們學過的立體 圖形來計算它的體積?
。▎l(fā)學生思考。)
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?教師演示,引導學生進行觀察。
3、思考:
。1)圓柱切開后可以拼成一個什么形體?(長方體)
(2)通過實驗你發(fā)現(xiàn)了什么?
小組討論:實驗前后,什么變了?什么沒變?
討論后,整理出來,再進行匯報。
。ㄆ闯傻慕崎L方體體積大小沒變,形狀變了,拼成的近似長方
體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方形的`高就是圓柱的高,沒有變化。)
4、推導圓柱體積公式
小組討論:怎樣計算圓柱的體積?
學生匯報討論結(jié)果。
長方體的體積可以用底面積乘高來計算,而在推導過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計算。
師:圓柱的體積怎樣計算?用字母公式,怎樣表示?
板書: V=Sh
5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?
三、鞏固應(yīng)用練習。
1、一個圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,
這個水桶的容積是多少升?
說明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?
先求底面半徑再求底面積,最后求體積。
已知底面周長對解決問題有什么幫助嗎?必須先求出什么? 四:課堂小結(jié):
通過這節(jié)課你學會了哪些知識,有什么收獲?五:課后作業(yè):
教材第9頁,練一練第1、3、4、題
《圓柱的體積》教案7
教學內(nèi)容:
北師大版教學六年級《圓柱的體積》
教學目標:
1、結(jié)合具體的情境和實踐活動,理解圓柱體體積的含義。
2、經(jīng)歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3、培養(yǎng)學生初步的空間觀念和思維能力;
教學重點:
理解和掌握圓柱的體積計算公式,會求圓柱的體積。
教學難點:
理解圓柱體積計算公式的推導過程。
教具準備:
圓柱體積演示教具。
教學過程:
一、舊知鋪墊
1、談話引入
最近我們認識了圓柱和圓錐,還學會了計算圓柱的表面積,F(xiàn)在請看老師的這個圓柱形杯子和這個圓柱比較,誰大?這里所說的大小實際是指它們的什么?(生答)
2、提出問題:什么叫體積?我們學過那些圖形的體積?怎么算的?(生答師隨之板書)
這節(jié)課我們就來學習圓柱的體積。
二、自主探究,解決問題
(一)認識圓柱體積的意義。
圓柱的體積到底是指什么?誰能舉例說呢?
。ǘ﹫A柱體積的`計算公式的推導。
1、我們學過長方體和正方體體積的計算,圓柱體的體積跟什么有關(guān)呢?你會有怎樣的猜想?(小組內(nèi)說說)
2、回憶圓面積的推導過程。
3、教具演示。
。1)取圓柱體模型。
。2)將圓柱體切成兩半。
。3)分別將兩半均分成若干小塊。
(4)動手拼成一個近似的長方體。
(三)歸納公式。
。ò鍟簣A柱的體積=底面積高)
用字母表示:(板書:V=Sh)
三、鞏固新知
1、這個杯子的底面半徑為6厘米,高為16厘米,它的體積是多少?
審題。提問:你能獨立完成這題嗎?指名一同學板演,其余學生做在練習本上。
現(xiàn)在這個杯子裝了2/3的水,裝了多少水呢?
2、完成試一試
3、跳一跳:統(tǒng)一直柱體的體積的計算方法。
四、課堂總結(jié)、拓展延伸
這節(jié)課學習了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?這個公式適合哪些圖形?他們有什么共同特點?
五、布置作業(yè)
練一練1-5題。
《圓柱的體積》教案8
【教學內(nèi)容】
教科書第34~35頁例3及課堂活動,練習八1,2,3題。
【教學目標】
1.通過學生體驗圓柱體積公式的推導過程,掌握圓柱的體積公式并能應(yīng)用公式解決實際問題。
2.倡導交流、合作、實驗操作等學習方式,培養(yǎng)學生觀察、猜測、分析、比較、綜合的學習思考方法。
3.讓學生感受探索數(shù)學奧秘的樂趣,培養(yǎng)學生學習數(shù)學的積極情感。
【教學重點】
圓柱體積計算方法及應(yīng)用。
【教學準備】
教具:標有厘米刻度的透明長方體容器和圓柱容器、量筒、多媒體課件。
【教學過程】
一、實驗回顧長方體體積計算方法
。1)出示透明長方體容器。
教師:現(xiàn)在我們向這個容器里倒入1厘米深的水,容器里的水會形成什么形體?(長方體)
。ń處煬F(xiàn)場操作倒水)估計一下,有多少立方厘米?
怎樣才能知道這層長方體的水有多少立方厘米?
。A設(shè):①計算;②倒入量筒測量)
。2)如果要計算的話,要測量哪些數(shù)據(jù)?
。ㄕ堃幻麑W生前臺測量,教師注意提醒從內(nèi)部量)
教師板書數(shù)據(jù),全體學生即時計算,一生板演。
學生講解,教師從算式中用紅線勾出表示底面積的部分。
說明:長方體的體積可以用底面積乘高來計算,當高為1 cm時,底面的面積數(shù)就是這個長方體所含的體積單位數(shù)。
教師再往容器內(nèi)依次倒入2 cm,3 cm高的水,隨機請學生口答出體積數(shù)。
。3)揭示:當長方體的高度增加,我們就可以用一層的體積數(shù)乘上高度(也就是層數(shù))來求得體積。
二、實驗探究,學習新知
1.初次實驗
出示標有厘米刻度的圓柱形玻璃容器。
教師:向這個容器里倒入1厘米深的水,水會形成什么形狀?(圓柱)
教師操作倒水后:猜一猜,這個圓柱形水柱的'體積如何計算?(教師板書學生猜測結(jié)果:V=Sh)
教師:假如這些猜測合理,我們需要測量哪些數(shù)據(jù)?(d或r)
一名學生上前臺在教師的協(xié)助下現(xiàn)場測量,記錄下數(shù)據(jù)。
學生集體按照自己猜測的方法演算結(jié)果,并進行相關(guān)板演。
教師:怎樣證明這些結(jié)果的正確性?(量筒測量)
教師將容器中的水倒入量筒,直觀驗證V=Sh的正確性。
2.二度實驗
教師:一次實驗還不能說明問題,我們再進行幾次行嗎?
教師往容器中倒入2 cm,4 cm,5 cm,10 cm高的水,學生計算后,師生共同用量筒直觀驗證,并生成實驗表格。
3.實驗分析
教師:剛才的實驗說明了什么?觀察數(shù)據(jù)你還有哪些發(fā)現(xiàn)?
4.回歸課本,認識轉(zhuǎn)化法推導圓柱體積,擴展對公式的認識
教師:圓柱體積V=Sh,關(guān)于這個方法,我們的數(shù)學家們用不同的方法進行了相關(guān)的說明,一起來看看。
課件配音演示:
教師:欣賞了數(shù)學家的推導方法,再回憶一下我們剛才的實驗,你想說點什么嗎?
三、實踐應(yīng)用,鞏固新知
1.基本技能訓練
練習八第1題。
2.拓展應(yīng)用,促進發(fā)展
教學例3。
教師:不告訴圓柱的底面積,你能求出它的體積嗎?
課件出示例3:
集體感知題意。全體學生獨立完成,兩名學生板演后講解。
教師小結(jié):當求體積的必要條件沒有直接告訴時,我們應(yīng)先根據(jù)相關(guān)信息予以解決。
3.獨立作業(yè)
練習八第2,3題。
四、全課總結(jié):
教師:今天我們一起研究了什么知識?在今天的學習中你的最大收獲是什么?
《圓柱的體積》教案9
教學目標
圓柱的體積(1)
圓柱的體積(教材第25頁例5)。
探索并掌握圓柱的體積計算公式,會運用公式計算圓柱的體積,體會轉(zhuǎn)化的思想方法。
教學重難點
1.掌握圓柱的體積公式,并能運用其解決簡單實際問題。
2.理解圓柱體積公式的推導過程。
教學工具
推導圓柱體積公式的圓柱教具一套。
教學過程
復習導入
1、口頭回答。
(1)什么叫體積?怎樣求長方體的體積?
(2)怎樣求圓的面積?圓的面積公式是什么?
(3)圓的面積公式是怎樣推導的?在學生回憶的基礎(chǔ)上,概括出“轉(zhuǎn)化圖形——建立聯(lián)系——推導公式”的方法。
2、引入新課。
我們在推導圓的面積公式時,是把它轉(zhuǎn)化成近似的長方形,找到這個長方形與圓各部分之間的聯(lián)系,由長方形的面積公式推導出了圓的面積公式。今天,我們能不能也用這個思路研究圓柱體積的計算問題呢?
教師板書:圓柱的體積(1)。
新課講授
1、教學圓柱體積公式的推導。
(1)教師演示。
把圓柱的底面分成16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積相等,底面是扇形的立體圖形。
(2)學生利用學具操作。
(3)啟發(fā)學生思考、討論:
、賵A柱切開后可以拼成一個什么立體圖形?
學生:近似的長方體。
、谕ㄟ^剛才的實驗你發(fā)現(xiàn)了什么?
教師:拼成的近似長方體和圓柱相比,體積大小變了沒有?形狀呢?
學生:拼成的近似長方體和圓柱相比,底面的形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方體的高就是圓柱的高,沒有變化。故體積不變。
(4)學生根據(jù)圓的面積公式推導過程,進行猜想:
、偃绻褕A柱的底面平均分成32份,拼成的形狀是怎樣的?
②如果把圓柱的底面平均分成64份,拼成的形狀是怎樣的?
、廴绻褕A柱的底面平均分成128份,拼成的形狀是怎樣的?
(5)啟發(fā)學生說出:通過以上的觀察,發(fā)現(xiàn)了什么?
①平均分的份數(shù)越多,拼起來的形狀越接近長方體。
②平均分的份數(shù)越多,每份扇形的面積就越小,弧就越短,拼起來的長方體的長就越接近一條線段,這樣整個立體形狀就越接近長方體。
(6)推導圓柱的體積公式。
①學生分組討論:圓柱的體積怎樣計算?
②學生匯報討論結(jié)果,并說明理由。
教師:因為長方體的體積等于底面積乘高,而近似長方體的體積等于圓柱的體積,近似長方體的底面積等于圓柱的底面積,近似長方體的高等于圓柱的高,所以圓柱的體積=底面積×高。
2、教學補充例題。
(1)出示補充例題:一根圓柱形鋼材,底面積是1250px2,高是2.1m。它的體積是多少?
(2)指名學生分別回答下面的'問題:
①這道題已知什么?求什么?
②能不能根據(jù)公式直接計算?
、塾嬎阒耙⒁馐裁?
學生:計算時既要分析已知條件和問題,還要注意先統(tǒng)一計量單位。
(3)出示下面幾種解答方案,讓學生判斷哪個是正確的。
①50×2.1=105(cm3)答:它的體積是2625px3。
、2.1m=5250px 50×210=10500(cm3)
答:它的體積是262500px3。
③1250px2=0.5m2 0.5×2.1=1.05(m3)
答:它的體積是1.05m3。
④1250px2=0.005m2
0.005×2.1=0.0105(m3)
答:它的體積是0.0105m3。
先讓學生思考,然后指名學生回答哪個是正確的解答,并比較一下哪一種解答更簡單。對不正確的第①、③種解答要說說錯在什么地方。
(4)引導思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?
教師板書:V=πr2h。
課堂作業(yè)
教材第25頁“做一做”和教材第28頁練習五的第1題。學生獨立做在練習本上,做完后集體訂正。
答案:“做一做”:1. 6750(cm3)
2. 7.85m3
第1題:(從左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
課堂小結(jié)
通過這節(jié)課的學習,你有什么收獲?你有什么感受?
課后作業(yè)
完成練習冊中本課時的練習。
第4課時圓柱的體積(1)
課后小結(jié)
1.“圓柱的體積”是學生在掌握了圓柱的基本特征以及長方體、正方體體積計算方法等基礎(chǔ)上學習的。它是今后學習圓錐體積計算的基礎(chǔ)。
2.采用小組合作學習,從而引發(fā)自主探究,最后獲取知識的新方式來代替教師講授的老模式,能取得事半功倍的效果。
3.推導公式時間過長,可能導致練習時間少,練習量少,要注意把控。
課后習題
教材第25頁“做一做”和教材第28頁練習五的第1題。學生獨立做在練習本上,做完后集體訂正。
答案:“做一做”:1. 6750(cm3)
2. 7.85m3
第1題:(從左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
《圓柱的體積》教案10
教材簡析:
本節(jié)內(nèi)容包括圓柱的體積計算公式的推導,利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學生學過的知識作鋪墊,采用遷移法,引導學生將圓柱體化成已學過的立體圖形,再通過觀察、比較找兩個圖形之間的關(guān)系,可推導出圓柱的體積計算公式。例4是圓柱的體計算公式的直接運用,是圓柱體積計算的基本,但這題又給學生設(shè)置了單位不統(tǒng)一的障礙,讓學生在直接應(yīng)用公式計算的同時注意計量單位的統(tǒng)一。例5是圓柱體積計算公式的擴展練習,意在讓學生加深理解容積的概念,使之明確求水桶的容積就是求水桶內(nèi)部的體積。例5除了在意義上擴展外,公式的運用中也有加深,水桶的底面積沒有直接給出,因此要先求出水桶的底面積,再求出水桶的體積。
教學目的:
1、運用遷移規(guī)律,引導學生借助因面積計算公式的推導方法來推導圓柱的體積計算公式,并理解這個過程。
2.會用圓柱的體積計算圓柱形物體的體積和容積。
3.引導學生逐步學會轉(zhuǎn)化的數(shù)學思想和數(shù)學法,培養(yǎng)學生解決實際問題的能力
4.借助實物演示,培養(yǎng)學生抽象、概括的思維能力。
教 具:圓柱體、長方體彩圖各一張,圓柱的體積公式演示教具。
學 具:小刀,用土豆做成的一個圓柱體。
教學過程:
一、復習鋪墊
1.說說長方體的體積計算公式,正方體的體積計算公式,把這兩個體積公式統(tǒng)一成一個又是怎樣的?這個公式計算體積的物體有什么特征?
2.指出圓柱各部分的名稱。說一說圓柱有多少條高?有幾個底面?每個1自由的面積如何計算?這個計算公式是怎樣推導出來的'?
二、設(shè)疑揭題
我們能把一個圓采用化曲為直、化圓為方的方法推導出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。
[評析:復習抓住教學重點,瞄準學習新知識所必須的舊知識,、舊方法進行鋪墊,溝通了知識之間的內(nèi)在聯(lián)系,銜接自然。新課引入教師引出了學習新知識的思路,導出了解決問題的方法,從而調(diào)動了學生學習的積極性,激發(fā)了學生探求新知識的欲望。
三、新課教學
1.探究推導圓柱的體積計算公式。
(l)自學第43頁第二自然段,然后按照書中要求,兩人一組將于中的圓柱切開拼一拼,再說一說你拼成三個近似什么形狀的立方體?
(2)請學生演示教具,學生邊演示邊講解切割拼合過程。
(3)根據(jù)學生講解,出示圓柱和長方體的彩圖。
(4)學生觀察兩個立體圖,找出兩圖之間有哪些部分是相等的?
(5)依據(jù)長方體的體積計算公式推導出圓柱的體積計算公式。板書:V=sh
(6)要用這個公式計算圓柱的體積必須知道什么條件?
[評析:在教學中充分讓學生動手、動腦、動口,讓學生在操作中感知,在觀察中理解,在比較中歸納。教師的導、放、扶層次分明,充分體現(xiàn)了教師的主導作用和學生的主體作用。這樣的教學,不僅有利于學生理解算理,掌握算法,而且在公式的推導過程中,領(lǐng)悟了學習方法,培養(yǎng)了學生的學習能力、抽象概括能力和邏輯思維能力]
2.教學例4
(1)出示例4。
(2)默讀題目,看題目告訴了什么條件?要求什么?想一想你將如何計算?誰愿意試一試?
(3)請一名同學板演,其余同學在作業(yè)本上做。
(4)板演的同學講解自己的解題方法,說一說在做這道題的過程中遇到了什么問題,是怎樣解決的?
(5)教師歸納學生所用的解題方法。強調(diào)在解題的過程中要注意單位統(tǒng)一。
3.教學例5
(1)請同學們想一想,如果已知圓柱底面的半徑r t和高h,怎樣求圓柱的體積?請學生自學并填寫第44頁第一自然段的空白部分。
(2)出示例5,指名讀題。請同學們思考解題方法。
(3)請學生講解題思路討論、歸納統(tǒng)一的解題方法。
(4)讓學生按討論的方法做例5。
(5)教師評講、總結(jié)方法。
(6)學生討論。比較例4、例5有哪些相同和不同點。
[評析:引導學生通過實際操作,由觀察、分析、比較,再進行計算,達到運用新知、鞏固新知的目的。]
四、新知應(yīng)用
1.做第44頁下面做一做的題目。兩人板演,其余在自己作業(yè)本主做,做完后及時反饋練習中出現(xiàn)的錯誤,并加以評講。
2.剛才同學們在做例4時,還有下面幾種解法,請大家仔細思考,這些解法是對還是錯?試說明理由。
(1)V=sh=5O2.1=105
答:它的體積是105立方厘米
(2)2.l米=210厘米
V=sh=50210=10500
答:它的體積是10500立方厘米。
(3)50立方厘米=0.5立方米
V=sh=0.52.1=1.05(立方米)
答:它的體積是l.05立方米。
(4)50平方厘米=0.005平方米。
V=0。00521=0.01051
答:它的體積是0.01051(立方米)。
五、全課總結(jié)
問:這節(jié)課里我們學到了哪些知識?根據(jù)學生回答教師總結(jié)。
六、學生作業(yè)
練習十一的第l 、2題。
[總結(jié)實:本節(jié)課的教學體現(xiàn)了三個主要特點:一、利用遷移規(guī)律引入新課,為學生創(chuàng)設(shè)良好的學習情境;二、遵循學生的認知規(guī)律,引導學生操作、觀察、思考、說理,調(diào)動多種感觀參與學習;三、正確處理兩主關(guān)系,充分發(fā)揮學生的主體作用,注意學生學習的參與過程及知識的獲取過程,學生積極性高,學習效果好?傊,本節(jié)課教師引導得法,學生學得靈活,體現(xiàn)了重在思,貴在導,導思結(jié)合的原則,體現(xiàn)了教是為了不教,學會是為了會學的素質(zhì)教育思想]
《圓柱的體積》教案11
教學目標
1.使學生初步理解和掌握圓柱的體積計算公式。會用公式計算圓柱的體積,并能應(yīng)用分式解答一些實際問題。
2.在充分展示體積公式推導過程的基礎(chǔ)上,培養(yǎng)學生推理歸納能力和自學能力。
教學重點和難點
圓柱體積公式推導過程;正確理解圓柱體積公式推導過程。
教學過程設(shè)計
我們已經(jīng)認識了圓柱體,學會了圓柱體側(cè)面積和表面積的計算,今天研究圓柱的體積。(板書:圓柱的體積)
(一)復習準備
1.什么叫體積?(指名回答)
生:物體所占空間的大小叫做體積。
師:你學過哪些體積的計算公式?(指名回答)
根據(jù)學生的回答,板書:
長方體體積=底面積×高
2.圓面積公式是怎樣推導出來的?
生:把一個圓,平均分成數(shù)個扇形,拼成一個近似長方形,長方形的長相當于圓周長的一半,寬相當于圓的半徑,(根據(jù)學生的敘述,邊用幻燈片演示。)得到圓面積公式S=πr2。
(二)學習新課
1.動腦筋想一想,圓柱的體積,能不能轉(zhuǎn)化成你學過的形體,推導出計算圓柱體積的公式?
2.看書自學。
(1)圓柱體是怎樣變成近似長方體的?
(2)切拼成的長方體與圓柱體有什么關(guān)系?
(3)怎樣計算切拼成的長方體體積?
3.推導圓柱體積公式。
(1)討論自學題(1)。圓柱體是怎樣變成長方體的?(指名敘述)再看看書和你敘述的一樣嗎?
把圓柱體底面分成許多相等的扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。(教師加以說明,底面扇形平均分的份數(shù)越多,拼成的立體圖形越接近長方體。)
(2)動手操作切拼,將圓柱體轉(zhuǎn)化成長方體。
出示兩個等底等高圓柱體,讓學生比一比,底面積大小一樣,高相等,使學生確信,兩個圓柱體的體積相等。
請兩名同學按照你們的敘述,把圓柱體切拼成長方體。(如有條件,每四人一個學具,人人動手切拼,充分展示切拼過程和公式推導過程。)
現(xiàn)在討論自學題(2)。
師:這個長方體與圓柱體比較一下,什么變了?什么沒變?
生:形狀變了,體積大小沒變。
(3)推導圓柱體積公式。
討論:切拼成的長方體與圓柱體有什么關(guān)系?(引導學生有順序的進行敘述,分小組討論,讓學生充分發(fā)言。)
小結(jié):切拼成的長方體的體積相當于圓柱的體積,長方體的底面積相當于圓柱體的底面積,長方體的高相當于圓柱體的高。
師:圓柱的體積怎樣計算?用字母公式,怎樣表示?
板書:V=Sh
(4)利用公式進行計算。
例1一根圓柱形鋼材,底面積是50平方厘米,高2。1米,它的體積是多少?
引導學生審題,說出題目中的已知條件和問題。做這道題還要注意什么?
生:已知圓柱體底面積和高,求圓柱的體積,注意統(tǒng)一單位名稱。
2。1米=210厘米(①用字母表示已知條件)
S=50h=210(②寫出字母公式)
V=Sh(③列式計算)
=50×210(④寫出答題)
=10500
答:它的體積是10500立方厘米。
引導學生總結(jié)出做題步驟。
小結(jié):要求圓柱體積,必須知道圓柱的底面積(如果給半徑、直徑、底面周長,會求出底面積)和高。注意統(tǒng)一單位名稱。
(三)鞏固反饋
1.圓柱體的底面積3。14平方分米,高40厘米。它的體積是多少?
2.求下面圓柱體的`體積。(單位:厘米)
3.填表:
4.一個圓柱形容器,底面半徑是25厘米,高8分米。它的容積是多少立方分米?
5.一個圓柱形糧囤,從里面量,底面周長是6。28米,高20分米。它的容積是多少立方米?
(四)課堂總結(jié)
這節(jié)課,你學會了什么?還有什么問題?
生:學會了圓柱體的體積計算公式,并會用公式解答實際問題。
思考題:
一張長方形的紙長6。28分米,寬4分米。用它分別圍成兩個圓柱體,它們的體積大小一樣嗎?請你計算一下。
課堂教學設(shè)計說明
本節(jié)教案分三個層次。
第一層次是復習。
第二層次,推導圓柱體的計算公式。在學生自學的基礎(chǔ)上,親自動手切拼,把圓柱體轉(zhuǎn)化成近似的長方體,找出近似長方體與原圓柱體各部分相對應(yīng)部分,從而推出圓柱體積計算公式。用知識遷移法,把舊知識發(fā)展重新構(gòu)建轉(zhuǎn)化為新知識,使學生認識到形變質(zhì)沒變的辯證關(guān)系,培養(yǎng)學生自學能力,動手能力,觀察分析和歸納能力。
第二層次,針對本節(jié)所學知識內(nèi)容,安排適度練習,由易到難,由淺入深,使學生當堂掌握所學的新知識,并通過練習達到一定技能。
本節(jié)教案特點:充分體現(xiàn)以教師為主導,學生為主體,讓學生動手、動腦、參與教學全過程,較好地處理教與學,練與學的關(guān)系。寓教于玩中學會新知識,使學生愛學、會學,培養(yǎng)了學生動手操作能力、口頭表達能力和邏輯思維能力,讓學生充分體驗成功的喜悅。
《圓柱的體積》教案12
尊敬的各位領(lǐng)導、老師:
大家好!今天,我說課的內(nèi)容是北師大版小學數(shù)學六年級下冊《圓柱的體積》。
一、 把握教材,目標定位
《圓柱的體積》是在學生初步認識了圓柱體的基礎(chǔ)上,進一步研究圓柱體的特征,讓學生比較深入地研究立體幾何圖形,是學生發(fā)展空間觀念的又一次飛躍。圓柱體是基本的立體幾何圖形,通過學習,可以培養(yǎng)學生形成初步的空間觀念,為下一步學習“圓錐的體積”打下基礎(chǔ)。根據(jù)本節(jié)課的性質(zhì)特點和六年級學生以形象思維為主、空間觀念還比較薄弱的特點,我確定本節(jié)課的教學目標為:
1、知識與能力:通過推導圓柱體積公式的過程,向?qū)W生滲透轉(zhuǎn)化思想,建立空間觀念,培養(yǎng)學生判斷、推理的能力和遷移能力。
2、過程與方法:結(jié)合具體情境和實踐活動,理解圓柱體積的含義。探索并掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3、情感、態(tài)度、價值觀:感悟數(shù)學知識的內(nèi)在聯(lián)系,增強學生應(yīng)用數(shù)學的意識,激發(fā)學生的學習興趣。
教學的重點和難點:
由于圓柱體積計算是圓錐體積計算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學重點。其中,圓柱體積計算公式的推導過程比較復雜,需要用轉(zhuǎn)化的方法來推導,推導過程要有一定的邏輯推理能力,因此,推導圓柱體積公式的過程是本節(jié)課的難點。
二、 把握學情,選擇教法
(一)學情分析
六年級的學生已經(jīng)有了較豐富的生活經(jīng)驗,這些感性經(jīng)驗是他們進一步學習的基礎(chǔ),本節(jié)課的學習過程正是讓學生的感性經(jīng)驗上升到理性經(jīng)驗的過程,符合學生的年齡特征和認知規(guī)律,在這一過程中,能使學生體會到認識事物和歸納事物特征的方法,學會運用數(shù)學的思維方式去認識世界。
(二)、選擇教法,實踐課題。
《新課程標準》指出:數(shù)學教學應(yīng)聯(lián)系現(xiàn)實生活,使學生從中獲得數(shù)學學習的積極情感體驗,感受數(shù)學的力量。同時我緊密結(jié)合自己的課題“培養(yǎng)學生自主合作學習能力與學生數(shù)學素養(yǎng)的策略研究”、“在數(shù)學課上如何激發(fā)學生的學習興趣”。通過教學實踐,使學生學會自主學習和小組合作,培養(yǎng)學生的創(chuàng)新精神和小組合作及應(yīng)用數(shù)學意識。因此,在本節(jié)課中,我認為運用活動教學形態(tài),多媒體演示形態(tài),采取“引導-合作-自主—探究”的教學方法,使每個學生都能參與到學習中,感受到學習的樂趣,從而突破本課的難點。
三、 教學策略的選擇。
現(xiàn)代教育心理學認為:小學生思維的發(fā)展是從具體形象思維向抽象思維過渡的。因此,按小學認知規(guī)律從“具體感知-形成表象-進行抽象”的過程,我打算主要采用觀察發(fā)現(xiàn)法、實驗法,以及分組討論、合作學習等形式,并運用多媒體輔助教學,讓學生在觀察、感知各種實物的基礎(chǔ)上,動手操作,分組討論、合作學習,教師恰當點撥,適時引導等方法及手段,激發(fā)學生的學習興趣,調(diào)動學生的學習積極性,讓學生通過動手操作、觀察、實驗得出結(jié)論,體現(xiàn)了以學生為主體、教師為主導的教學原則。
四、基于以上構(gòu)想,我確定本節(jié)課的教學程序為:
教師活動: 創(chuàng)設(shè)情境 協(xié)作指導 拓展延伸
學生活動: 操作感悟 自主探究 實踐應(yīng)用
具體為三個環(huán)節(jié)進行教學:
1. 直觀演示,操作發(fā)現(xiàn)
讓學生充分利用直觀教具觀察、比較、動手操作、討論交流,使學生在豐富感性認識的基礎(chǔ)上,在老師的指導下,推導出圓柱體積計算的公式。從而使學生從感性認識上升到理性認識,體會知識的由來,并通過已學知識解決實際問題,充分發(fā)揮了直觀教學在知識形成過程中的積極作用,同時也培養(yǎng)了學生學習數(shù)學的能力和學習習慣。
2. 巧設(shè)疑問,體現(xiàn)兩“主”
教師通過設(shè)疑,指明觀察方向,營造探究新知識的氛圍,在引導學生歸納推理等方面充分發(fā)揮了其主導作用,有目的、有計劃、有層次地啟迪學生的思維,充分發(fā)揮了學生的主體作用。把學生當作教學活動的主體,成為學習活動的主人,使學生在觀察、比較、討論、研究等一系列活動中參與教學全過程,從而達到掌握新知識和發(fā)展能力的目的。
3. 運用遷移,深化提高
運用知識的遷移規(guī)律,培養(yǎng)學生利用舊知學習新知的能力,從而使學生主動學習,掌握知識,形成技能。
現(xiàn)代課堂教學中,不是老師單純地傳授知識,而是在老師的指引下,讓學生自己學,任何人都不能替代學生學習。所以要把教法融于學法中,在學法中體現(xiàn)教法。
本節(jié)課的教學,使學生掌握一些基本的`學習方法
1. 學會通過觀察、比較、推理能概括出圓柱體積的推導過程。
2. 學會利用舊知轉(zhuǎn)化成新知,解決新問題的能力。
3. 學會利用知識的遷移規(guī)律,把知識轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運用的能力。
具體教學程序:
(一)、情景引入:
1、復習:
大家還記得長方體、正方體的體積怎樣求嗎?讓學生說出公式。出示圓柱形水杯。(1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?
(2)你能想辦法計算出這些水的體積嗎?
。3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算。
2、創(chuàng)設(shè)問題情景。
如果要求壓路機圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?今天,我們就來一起研究圓柱體積的計算方法。(板書課題:圓柱的體積)通過創(chuàng)設(shè)問題情景,可以引導學生運用已有的生活經(jīng)驗和舊知,積極思考,去探索和解決實際問題,并能制造認知沖突,形成"任務(wù)驅(qū)動"的探究氛圍。
(二)、新課教學:
設(shè)疑揭題:同學們想一想,我們當初是如何推導出圓的面積計算公式的呢?演示推導圓的面積公式的轉(zhuǎn)化過程。我們能把一個圓采用化曲為直、化圓為方的方法推導出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學過的立體圖形來求它的體積呢?引導學生小組合作交流、觀察、既而動手操作。沿著圓柱底面把圓柱切開,可以得到大小相等的16塊或更多塊,啟發(fā)學生說出轉(zhuǎn)化成我們熟悉的長方體。同時引導學生觀察轉(zhuǎn)化前后兩種幾何形體之間的內(nèi)在聯(lián)系,圓柱的底面與長方體的底面有什么關(guān)系?圓柱的高與長方體的高又有什么關(guān)系?學生交流、進行驗證、自己推導出圓柱體體積計算的公式。教師再用多媒體演示驗證整個的具體操作過程,最后讓學生說一說圓柱體計算公式的整個推導過程。引導學生用字母表示出來。
根據(jù)教材特點,學生的認知過程,充分調(diào)動學生的學習熱情,激發(fā)求知欲望,調(diào)動學生的各種感官,親自完成從演示——觀察——操作——比較——歸納——推理的認識過程,讓知識在觀察、操作、比較中內(nèi)化,實現(xiàn)由感性到理性,由具體到抽象,這種教學方法符合學生的認知規(guī)律,有助于突破難點,化解難點。
關(guān)于難點的突破,我主要從以下幾個方面著手:
。1) 引導學生自己動手通過觀察比較,明確圓柱體的體積與它的底面積和高有關(guān)。
。2) 運用知識遷移的規(guī)律,啟發(fā)引導,層層深入促進學生在積極的思維中獲得新知識。
(3) 充分利用直觀教具,師生互動,小組合作,通過演示操作,幫助學生找出兩種幾何形體轉(zhuǎn)化前后的關(guān)系。
。4) 根據(jù)新舊知識的連接點,精心設(shè)計討論內(nèi)容,分散難點,促進知識的形成。
3. 運用。出示例1:先由學生自己嘗試練習,請一位學生板演,集體講評時提問學生,在解題時要注意什么?讓學生自己來概括總結(jié),通過學生的語言說出:
。1)單位要統(tǒng)一
。2)求出的是體積要用體積單位。在掌握了圓柱體積計算的方法之后,安排例1進行嘗試練習,這樣既可以調(diào)動學生的學習積極性和主動性,又可以培養(yǎng)學生學習新知識的能力,同時把所學知識轉(zhuǎn)化為相應(yīng)的技能。
(三)鞏固練習,檢驗目標
1.練一練1題:計算各圓柱的體積,目的是讓學生進一步理解鞏固圓柱的體積公式。
2.完成練習第2題。通過練習,鞏固新知識,加深對新知識的理解,把所學知識進一步轉(zhuǎn)化為能力,在練習中發(fā)展智力,培養(yǎng)優(yōu)良的思維品質(zhì)和學習習慣。
3.變式練習:已知圓柱的體積、底面積,求圓柱的高。
這道題的安排是對所學內(nèi)容的深化,在掌握基礎(chǔ)知識的前提下,培養(yǎng)思維的靈活性,同時深化教學內(nèi)容,防止思維定式。
4.動手實踐:讓學生測量自帶的圓柱體。
教師提問:如果要知道這個圓柱體積,該用什么方法?讓學生說一說是怎樣測量的?又是如何計算的?
這道題的設(shè)計,一方面培養(yǎng)了學生解決實際問題的能力,另一方面也加深了對圓柱體積計算公式的理解,同時數(shù)學知識也和學生的生活實際結(jié)合起來,使學生明白,我們所學的數(shù)學是身邊的數(shù)學,是有趣的、有用的數(shù)學,從而激發(fā)學生的學習興趣。
(四)總結(jié)全課,深化教學目標
結(jié)合板書,引導學生說出本課所學的內(nèi)容,我是這樣設(shè)計的:這節(jié)課我們學習了哪些內(nèi)容?圓柱體積的計算公式是怎樣推導出來的?你有什么收獲?然后教師歸納,通過本節(jié)課的學習,我們懂得了新知識的得來是通過已學的知識來解決的,以后希望同學們多動腦,勤思考,在我們的生活中還有好多問題需要利用所學知識來解決的,望同學們能學會運用,善于用轉(zhuǎn)化的思想來豐富自己的頭腦,思考問題。
板書設(shè)計: 圓柱的體積
長方體的體積=(長×寬)×高
↓ ↓ ↓
圓柱體的體積=底面積 × 高
↓ ↓
V = S h
本節(jié)課我采用的是圖示式板書,這樣能讓學生清楚地看出圓柱體積公式的推導過程,以及兩個形體間的密切聯(lián)系,同時便于學生對于公式的記憶和理解。
五、教學效果預測:
新課程標準認為:“數(shù)學教學是師生交往、互動與共同發(fā)展的過程,教師是課堂氣氛的調(diào)節(jié)者”。本節(jié)課我始終注意以人為本,從學生的興趣出發(fā),通過動手實踐、自主探究、自主發(fā)現(xiàn)、使學生充分地理解、掌握圓柱體體積公式的推導過程,并熟練地加以運用。總之,本節(jié)課的設(shè)計,我遵循小學生的認知規(guī)律,由直觀到抽象,由感性到理性,采用分組討論,合作學習等形式,讓學生參與教學全過程,增強了學生的主人翁意識。并用計算機多媒體教學輔助教學,激發(fā)了學生的學習興趣,提高了教學效率與效益。在圓滿的同時,我也覺得會有一些可能出現(xiàn)問題的地方:比如,在具體的運用、實踐中一定要注意和圓柱的表面積加以區(qū)別,這一點我在實際的教學中會多加以指導和訓練。
以上是我《圓柱的體積》的說課設(shè)計,謝謝大家!
《圓柱的體積》教案13
教學內(nèi)容:
P19-20頁例5、例6及補充例題,完成“做一做”及練習三第1~4題。
教學目標:
1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學會用轉(zhuǎn)化的數(shù)學思想和方法,解決實際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學生的自主探索意識。
教學重點:
掌握圓柱體積的計算公式。
教學難點:
圓柱體積的計算公式的推導。
教學過程:
一、復習
1、復習圓面積計算公式的推導方法及過程。
2、什么叫物體的體積?長方體、正方體的體積公式是什么?(長方體的體積=長×寬×高,正方體的體積=棱長3,長方體和正方體體積的統(tǒng)一公式=底面積×高)
二、新課
1、圓柱體積計算公式的推導。
。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形——課件演示)
。2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)
。3)通過觀察,使學生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)
2、教學補充例題
(1)出示補充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?
。2)指名學生分別回答下面的問題:
、 這道題已知什么?求什么?
② 能不能根據(jù)公式直接計算?
、 計算之前要注意什么?(計算時既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位)
(3)出示下面幾種解答方案,讓學生判斷哪個是正確的.
①V=Sh
50×2.1=105(立方厘米)
答:它的體積是105立方厘米。
、2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
、50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的體積是1.05立方米。
④50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的體積是0.0105立方米。
先讓學生思考,然后指名學生回答哪個是正確的解答,并比較一下哪一種解答更簡單.對不正確的第①、③種解答要說說錯在什么地方.
(4)做第20頁的“做一做”。
學生獨立做在練習本上,做完后集體訂正.
3、引導思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?(V=πr2h)
4、教學例6
。1)出示例5,并讓學生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應(yīng)先知道杯子的容積)
。2)學生嘗試完成例6。
、 杯子的底面積:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
、 杯子的'容積:50.24×10=502.4(cm3)=502.4(ml)
5、比較一下補充例題、例6有哪些相同的地方和不同的地方?(相同的是都要用圓柱的體積計算公式進行計算;不同的是補充例題已給出底面積,可直接應(yīng)用公式計算;例6只知道底面直徑,要先求底面積,再求體積.)
三、鞏固練習
1、做第21頁練習三的第1題.
2、練習三的第2題.
這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習題.要求學生審題后,知道要先求出底面積,再求圓柱的體積。
四、布置作業(yè)
練習三第3、4題。
通過批閱作業(yè),發(fā)現(xiàn)圓柱體的表面積正確率極低,主要有幾方面原因:
1、計算錯誤;
2審題不認真,單位不統(tǒng)一;
3、靈活解決問題時,沒能正確判斷所求面積到底包含哪幾部分。
為提升正確率,所以今天補充了一節(jié)是練習課,主要是指導學生完成教材中的習題。在此,想談?wù)劸毩暥牡?1、19題。
第11題教材只要求學生根據(jù)切面形狀進行連線,其實這題應(yīng)該充分利用挖掘,不僅培養(yǎng)學生的空間觀念,同時還可提升學生解決實際問題的能力。所以在教學中,我補充了如下練習:
。1將一根高5分米的圓柱形木料沿底面直徑垂直切成兩部分,(如11題第2幅圖),這時表面積比原來增加了40平方分米。這根圓柱形木料原來的表面積是多少平方分米?
。2一個圓柱的側(cè)面展開是一個正方形,正方形的邊長是12.56分米,求這個圓柱體的表積。
第19題解決決起來很繁瑣,雖然課堂上我給予了學生十分充足的獨立嘗試練習時間,但在未給予任何提示的情況下全班僅4人全對,另有4人結(jié)果計算正確,但卻未換算單位,正確率僅為7.4%。所以下次再教時,此題應(yīng)加大指導力度。建議:先在小組內(nèi)討論“求涂油漆的面積也就是求什么?”然后強調(diào)單位換算,并復習平方米與平方厘米之間的進率(10000),最后再讓學生分步列式解答。第2問要求“一共需要多少元”結(jié)合生活實際,學生應(yīng)主動對計算結(jié)果取近似值。
第四課時教學反思
開放的設(shè)問結(jié)碩果
因為臨時換課,所以今天是本學期開學以來第一次在學生未預習的情況下教學新課。沒有預習,給學生的自主探索以更廣闊的空間。當學生提出可以將圓柱的底面分成許多相等的扇形,把圓柱切開,拼成一個近似的長方體后,我請學生們觀察并思考“轉(zhuǎn)化后的長方體與圓柱體之間有什么聯(lián)系呢?”
他們除了發(fā)現(xiàn)教材中所提到的體積不變、底面積不變、高不變外,還有不少新發(fā)現(xiàn)。如“長方體的長是圓柱體底面周長的一半”,“長方體的寬是圓柱體底面半徑”, “圓柱體的側(cè)面積是長方體前后兩個面的面積總和”(魏勉)。當學生的發(fā)現(xiàn)由底面積涉及到側(cè)面積時,我根據(jù)本班學情適時進行了拓展性提問,“將圓柱體轉(zhuǎn)化為長方體,表面積有變化嗎?如果有,有怎樣的變化?”由此將圓柱體與長方體轉(zhuǎn)化的探究由體積的變化引向了新的層面——表面積。
我將根據(jù)學情在練習課中補充相關(guān)練習:把一個高15厘米的圓柱體分割成若干份,再拼成一個近似的長方體,表面積增加了90平方厘米。那么這個圓柱的體積是多少?
今天的作業(yè)正確率明顯提升,但全班有4名學生將圓柱體側(cè)面積與體積公式混淆,列式全錯,因此要加強辨析指導。自從讓學生“創(chuàng)造”圓柱體表面積的另類推導方法及公式以來,孩子們探索并“創(chuàng)造”新公式的熱情不斷高漲。雖然,今天由于種種原因沒能給學生上課,但他們?nèi)耘f將自己的新發(fā)現(xiàn)用紙條記錄了下來送到我的手中。
創(chuàng)新(一)圓柱體側(cè)面積:圓柱體的體積=(2πrh) :(πrrh)=2:r。(發(fā)現(xiàn)者:沈洪鑫)
創(chuàng)新(二)圓柱的體積=圓柱的側(cè)面積÷2×r(發(fā)現(xiàn)者:蘭晟)
根據(jù)這一發(fā)現(xiàn),能夠有效提高已知半徑和側(cè)面積求體積或已知體積求側(cè)面積的習題。如:一根圓柱形木頭的側(cè)面積是37.68平方分米,底面半徑是3分米,它的體積是多少平方分米?如果按常規(guī)做法為:首先求圓柱體的高37.68÷(3.14×2×3)=2(分米);然后再求圓柱體的體積3.14×32×2=56.52平方分米),共需要6步。如果根據(jù)上述發(fā)現(xiàn),解答此題就只需要將37.68÷2×3即可求了正確結(jié)果,大大提高速度。
《圓柱的體積》教案14
教學內(nèi)容:P19-20頁例5、例6及補充例題,完成“做一做”及練習三第1~4題。
教學目標:
1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學會用轉(zhuǎn)化的數(shù)學思想和方法,解決實際問題的能力
滲透轉(zhuǎn)化思想,培養(yǎng)學生的自主探索意識。
教學重點:掌握圓柱體積的計算公式。
教學難點:圓柱體積的計算公式的推導。
教學過程:
一、復習
1、長方體的體積公式是什么?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的.體積=底面積×高)
2、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。
3、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導出求圓面積的計算公式。
二、新課
1、圓柱體積計算公式的推導。
。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形。
《圓柱的體積》教案15
教學內(nèi)容:
北師大版小學數(shù)學教材六年級下冊第8—10頁。
教學目標:
1、結(jié)合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,能夠運用公式正確的計算圓柱的體積和容積。
2、初步學會用轉(zhuǎn)化的思想和方法,提高解決實際問題的能力。
教學重點、難點:
重點:掌握圓柱體積的計算公式。
難點:圓柱體積計算公式的推導。
教學過程:
一、情境導入
1、出示教學情境:怎樣用學過的知識測量出老師的水杯里裝了多少毫升的水?
想一想:杯子里的水是什么形狀?準備用什么方法來計算水的體積?
讓學生討論得出:把杯子里的水倒入長方體或正方體容器,只要量出長方體的長、寬和水的高,就能求出水的體積。
2、出示第二情境:圓柱形的`木柱子、壓路機的車輪這樣的圓柱用這種方法還行嗎?怎么辦?
怎樣計算圓柱的體積?這就是我們本節(jié)課要研究的問題。(板書課題:計算圓柱的體積)
二、探究新知:
1、大膽猜想:你覺得圓柱體積的大小和什么有關(guān)?
學生猜想,教師出示相應(yīng)的課件演示,讓學生觀察,體會圓柱的體積和它的底面積和高,有關(guān)系,有怎樣的關(guān)系。
2、圓柱的體積可能等于什么?(說說猜想依據(jù))
長方體,正方體的體積都等于“底面積×高”猜想圓柱的體積也可能等于“底面積×高”。
。ㄓ谜n件展示切拼過程,讓學生觀察等分的份數(shù)越多越接近長方體,彌補直觀操作等分的份數(shù)太多不易操作的缺陷。)
學生討論交流:
(1)把圓柱拼成長方體后,什么變了,什么沒變?
。2)拼成的長方體與圓柱之間有什么聯(lián)系?
(3)通過觀察得到什么結(jié)論?
得到:圓柱的體積=底面積×高 V=Sh
三、拓展交流
要求圓柱的體積只要找到它的底面積和高就可以,分別討論知道半徑、直徑、地面周長,該怎么求出圓柱的體積,總結(jié)出公式。
四、練習設(shè)計:
1、想一想,填一填:
把圓柱體切割拼成近似(),它們的()相等。長方體的高就是圓柱體的( ),長方體的底面積就是圓柱體的( ),因為長方體的體積=(),所以圓柱體的體積=()。用字母“V”表示( ),“S”表(),“h”表示( ),那么,圓柱體體積用字母表示為( )
2、判斷正誤,對的畫“√”,錯誤的畫“×”。
(1)圓柱體的底面積越大,它的體積越大。×
(2)圓柱體的高越長,它的體積越大!
(3)圓柱體的體積與長方體的體積相等!
(4)圓柱體的底面直徑和高可以相等!
3、分別計算下列各圖形的體積,再說說這幾個圖形體積計算方法之間的聯(lián)系。
4×3×8
6×6×6
3.14×(5÷2)2×8
。96(cm3)
=216(cm3)
。157(cm3)
4、計算下面各圓柱的體積。
60×4
3.14×12×5
3.14×(6÷2)2×10
。240(cm3)
。15.7(cm3)
。282.6(dm3)
5、這個杯子能否裝下3000mL的牛奶?
3.14×(14÷2)2×20
。3077.2(cm3)
。3077.2(mL)
3077.2mL>3000mL
答:這個杯子能裝下3000mL的牛奶。
五、課堂小結(jié):談?wù)勥@節(jié)課你有哪些收獲?
【《圓柱的體積》教案】相關(guān)文章:
圓柱的體積教案03-19
《圓柱的體積》教案05-22
《圓柱的體積》教案(優(yōu)選)07-26
圓柱的體積教案15篇03-29
《圓柱的體積》教案15篇07-26
《圓柱的體積》說課稿01-16
圓柱的體積數(shù)學教案04-09
《圓柱的體積》教學反思02-13
《圓柱的體積》教學反思05-20